Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,546 Bytes
cd14485 e6a1391 cd14485 9719dbf e6a1391 c241b7f e6a1391 55a0b15 e6a1391 f67af4b cd14485 f67af4b e6a1391 9719dbf e6a1391 c241b7f e6a1391 261056f e6a1391 261056f e6a1391 7177172 c241b7f 7177172 e6a1391 28f7e6c e6a1391 269bf9a e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c 269bf9a e6a1391 9719dbf cd14485 d52fd55 cd14485 9719dbf cd14485 9719dbf cd14485 e6a1391 cd14485 d5b5c7a 9719dbf e6a1391 aa83efc 9719dbf aa83efc e6a1391 9719dbf e6a1391 cd14485 9719dbf e6a1391 b6c2057 3a2f25f c241b7f b6c2057 ad883ad e6a1391 7177172 3a2f25f e6a1391 ad883ad e6a1391 ad883ad e6a1391 9b3489f e6a1391 f67af4b e6a1391 28f7e6c e6a1391 ab58f48 28f7e6c ab58f48 28f7e6c ab58f48 ec17628 ab58f48 ec17628 28f7e6c ab58f48 e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 28f7e6c e6a1391 151d738 e6a1391 28f7e6c 51e39cd 28f7e6c 51e39cd 28f7e6c 51e39cd 28f7e6c 51e39cd ab58f48 e6a1391 28f7e6c 151d738 e6a1391 269bf9a 51e39cd 28f7e6c 51e39cd 28f7e6c 51e39cd 01babfe 28f7e6c 01babfe f67af4b 3f3e390 44cca0e 8d1f6b1 3f3e390 b6c2057 3f3e390 36ed904 cd14485 36ed904 cd14485 36ed904 269bf9a cd14485 36ed904 f67af4b e6a1391 3f3e390 e6a1391 6e8ab15 e6a1391 6e8ab15 e6a1391 269bf9a 9af4223 6e8ab15 e6a1391 9af4223 6e8ab15 e6a1391 6e8ab15 e6a1391 aa3dfb3 01babfe 27cb081 e6a1391 6e8ab15 27cb081 01babfe 27cb081 f67af4b ba890ea f67af4b 01babfe 151d738 fd9957e e6a1391 ba890ea 269bf9a ba890ea fd9957e ba890ea e6a1391 261056f e6a1391 261056f e6a1391 721c4bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import datetime
import json
import os
import uuid
import hashlib
import pickle
import gradio as gr
import pandas as pd
import spaces
import torch
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
from arxiv_stuff import ARXIV_CATEGORIES_FLAT
from dataset_utils import DatasetManager
# Get HF_TOKEN from environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
# Check if using persistent storage
persistent_storage = os.path.exists("/data")
if persistent_storage:
# Use persistent storage
print("Using persistent storage")
data_path = "/data"
else:
# Use local storage
print("Using local storage")
data_path = "./data"
# Embedding model details
embedding_model_name = "nomadicsynth/research-compass-arxiv-abstracts-embedding-model"
embedding_model_revision = "2025-01-28_23-06-17-1epochs-12batch-32eval-512embed-final"
# Amalysis model details
# Settings for Llama-3.3-70B-Instruct
reasoning_model_id = "meta-llama/Llama-3.3-70B-Instruct"
max_length = 1024 * 4
temperature = None
top_p = None
presence_penalty = None
# Settings for QwQ-32B
# reasoning_model_id = "Qwen/QwQ-32B"
# reasoning_start_tag = "<think>"
# reasoning_end_tag = "</think>"
# max_length = 1024 * 4
# temperature = 0.6
# top_p = 0.95
# presence_penalty = 0.1
# Global variables
dataset = None
embedding_model = None
reasoning_model = None
# Define a cache file path
cache_file = os.path.join(data_path, "query_cache.pkl")
# Load cache from file if it exists
if os.path.exists(cache_file):
with open(cache_file, "rb") as f:
query_cache = pickle.load(f)
else:
query_cache = {}
def hash_query(query: str) -> str:
"""Generate a unique hash for the query."""
return hashlib.sha256(query.encode("utf-8")).hexdigest()
def save_cache():
"""Save the cache to a file."""
with open(cache_file, "wb") as f:
pickle.dump(query_cache, f)
def init_embedding_model(
model_name_or_path: str, model_revision: str = None, hf_token: str = None
) -> SentenceTransformer:
"""
Initialize the embedding model with the specified model name or path and revision.
Args:
model_name_or_path (str): The name or path of the model.
model_revision (str): The revision of the model.
hf_token (str): The Hugging Face token for authentication.
Returns:
SentenceTransformer: The initialized embedding model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
embedding_model = SentenceTransformer(
model_name_or_path,
revision=model_revision,
token=hf_token,
device=device,
)
return embedding_model
@spaces.GPU
def embed_text(text: str | list[str]) -> torch.Tensor:
"""
Generate embeddings for the given text using the embedding model.
Args:
text (str | list[str]): The text or list of texts to embed.
Returns:
torch.Tensor: The generated embeddings.
"""
global embedding_model
# Strip any leading/trailing whitespace
text = text.strip() if isinstance(text, str) else [t.strip() for t in text]
embed_text = embedding_model.encode(text, normalize_embeddings=True) # Ensure vectors are normalized
return embed_text
def init_reasoning_model(model_name: str) -> InferenceClient:
global reasoning_model
reasoning_model = InferenceClient(
model=model_name,
provider="hf-inference",
api_key=HF_TOKEN,
)
return reasoning_model
def generate(messages: list[dict[str, str]]) -> str:
"""
Generate a response to a list of messages.
Args:
messages: A list of message dictionaries with a "role" and "content" key.
Returns:
The generated response as a string.
"""
global reasoning_model
system_message = {
"role": "system",
"content": "You are an expert in evaluating connections between research papers.",
}
messages.insert(0, system_message)
response_schema = r"""{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Generated schema for Root",
"type": "object",
"properties": {
"reasoning": {
"type": "string"
},
"key_connections": {
"type": "array",
"items": {
"type": "object",
"properties": {
"connection": {
"type": "string"
},
"description": {
"type": "string"
}
},
"required": [
"connection",
"description"
]
}
},
"synergies_and_complementarities": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "array",
"items": {
"type": "string"
}
},
"description": {
"type": "string"
}
},
"required": [
"type",
"description"
]
}
},
"research_potential": {
"type": "array",
"items": {
"type": "object",
"properties": {
"potential": {
"type": "string"
},
"description": {
"type": "string"
}
},
"required": [
"potential",
"description"
]
}
},
"rating": {
"type": "number"
},
"confidence": {
"type": "number"
}
},
"required": [
"reasoning",
"key_connections",
"synergies_and_complementarities",
"research_potential",
"rating",
"confidence"
]
}"""
response_format = {
"type": "json",
"value": response_schema,
}
result = reasoning_model.chat.completions.create(
messages=messages,
max_tokens=max_length,
temperature=temperature,
presence_penalty=presence_penalty,
response_format=response_format,
top_p=top_p,
)
output = result.choices[0].message.content.strip()
return output
def analyse_abstracts(query_abstract: str, compare_abstract: dict) -> str:
"""Analyze the relationship between two abstracts and return formatted analysis"""
global reasoning_model
# Check if the compare_abstract is valid
if not isinstance(compare_abstract, dict) or "abstract" not in compare_abstract:
return "Invalid compare_abstract format. Expected a dictionary with 'abstract' key."
if not query_abstract or not compare_abstract["abstract"]:
return "Invalid input. Please provide both query_abstract and compare_abstract."
# Check if the query_abstract is a string
if not isinstance(query_abstract, str):
return "Invalid query_abstract format. Expected a string."
# Check if the compare_abstract is a string
if not isinstance(compare_abstract["abstract"], str):
return "Invalid compare_abstract format. Expected a string."
# Check if the query_abstract is empty
if not query_abstract.strip():
return "Invalid query_abstract format. Expected a non-empty string."
# Check if the compare_abstract is empty
if not compare_abstract["abstract"].strip():
return "Invalid compare_abstract format. Expected a non-empty string."
messages = [
{
"role": "user",
"content": f"""You are trained in evaluating conceptual and methodological connections between research papers. Please **identify and analyze the reasoning-based links** between the following two papers:
Paper 1 Abstract:
{query_abstract}
Paper 2 Abstract:
{compare_abstract["abstract"]}
In your evaluation, consider the following dimensions:
* **Methodological Cross-Pollination**: Do the methods or approaches from one paper **directly inform, enhance, or contrast with** the other?
* **Principle or Mechanism Extension**: Do the papers **share core principles, mechanisms, or assumptions** that could be **combined or extended** to generate new understanding or tools?
* **Interdisciplinary Bridges**: Are there clear opportunities for **knowledge transfer or collaboration** across fields or problem domains?
* **Solution or Application Overlap**: Can the solutions, frameworks, or applications in one paper be **adapted or repurposed** to benefit the work in the other, leading to **tangible, novel outcomes**?
Assess these connections in both directions (Paper 1 β Paper 2 and Paper 2 β Paper 1). Focus on **relevant and practically meaningful links** β especially those that might be **missed in practice** due to the sheer volume of publications or the separation between research communities. These are often connections that would be **immediately apparent to an expert** familiar with both papers, but easily overlooked otherwise.
Return a valid JSON object in the following structure:
{{
"reasoning": "Step-by-step conceptual analysis of how the papers relate, highlighting **key connections**, complementary methods, or shared ideas. Emphasize the most **relevant, practically useful takeaways**, and use markdown bold to highlight major points.",
"key_connections": [
{{
"connection": "connection 1",
"description": "1β2 sentence explanation of the **main conceptual or methodological link**, emphasizing its practical or theoretical relevance."
}},
...
],
"complementarities": [
{{
"type": ["Methodological Cross-Pollination", "Principle or Mechanism Extension", "Interdisciplinary Bridges", "Solution or Application Overlap"], # Use only the most relevant label per entry
"description": "A concise explanation (1β2 sentences) of the **identified complementarity** or **productive relationship**, including a specific example or outcome it could enable."
}},
...
],
"research_potential": [
{{
"potential": "Potential application or outcome 1",
"description": "1β2 sentence explanation of the **concrete potential impact**, framed in terms of a **realistic scenario or use case**."
}},
...
],
"rating": 1-5, # Overall strength of the connection:
# 1 = No meaningful connection
# 2 = Weak or speculative connection
# 3 = Plausible but unproven connection
# 4 = Solid connection with future potential
# 5 = Strong, well-aligned connection with immediate, valuable implications
"confidence": 0.0-1.0 # Confidence score in your assessment (e.g., 0.85 for high confidence, 1.0 for absolute certainty)
# Note: The confidence score should reflect your level of certainty in the analysis, not the strength of the connection itself.
# A score of 0.0 indicates no confidence in the analysis, while 1.0 indicates absolute certainty.
}}
Return only the JSON object. All key names and string values must be in double quotes.
""",
},
]
# Generate analysis
try:
output = generate(messages)
except Exception as e:
return f"Error: {e}"
# Parse the JSON output
try:
output = json.loads(output)
except Exception as e:
return f"Error: {e}"
# Format the output as markdown for better display
key_connections = ""
synergies_and_complementarities = ""
research_potential = ""
if "key_connections" in output:
for connection in output["key_connections"]:
key_connections += f"- {connection['connection']}: {connection['description']}\n"
if "synergies_and_complementarities" in output:
for synergy in output["synergies_and_complementarities"]:
synergies_and_complementarities += f"- {', '.join(synergy['type'])}: {synergy['description']}\n"
if "research_potential" in output:
for potential in output["research_potential"]:
research_potential += f"- {potential['potential']}: {potential['description']}\n"
formatted_output = f"""## Synergy Analysis
**Rating**: {'β
' * output['rating']}{'β' * (5-output['rating'])} **Confidence**: {'β
' * round(output['confidence'] * 5)}{'β' * round((1-output['confidence']) * 5)}
### Key Connections
{key_connections}
### Synergies and Complementarities
{synergies_and_complementarities}
### Research Potential
{research_potential}
### Reasoning
{output['reasoning']}
"""
return formatted_output
# return '```"""\n' + output + '\n"""```'
# arXiv Embedding Dataset Details
# DatasetDict({
# train: Dataset({
# features: ['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi', 'report-no', 'categories', 'license', 'abstract', 'update_date', 'embedding', 'timestamp', 'embedding_model'],
# num_rows: 2689088
# })
# })
def log_query_and_results(query_id: str, query: str, results: list[dict], cache_hit: bool = False):
"""Log the query and results to a file, including whether it was a cache hit."""
log_entry = {
"timestamp": datetime.datetime.now().isoformat(),
"query_id": query_id,
"query": query,
"results": results,
"cache_hit": cache_hit,
}
log_file = os.path.join(data_path, "query_results_log.jsonl")
with open(log_file, "a") as f:
f.write(json.dumps(log_entry) + "\n")
# Print a short summary of the log entry with timestamp
cache_status = "Cache Hit" if cache_hit else "Cache Miss"
print(f"[{log_entry['timestamp']}] Query ID: {query_id}, Results Count: {len(results)}, Status: {cache_status}")
def find_synergistic_papers(abstract: str, limit=25) -> list[dict]:
"""Find papers synergistic with the given abstract using FAISS with cosine similarity"""
global dataset
# Generate a unique ID for the query
query_id = str(uuid.uuid4())
# Normalize the abstract for cosine similarity
abstract = abstract.replace("\n", " ")
abstract = " ".join(abstract.split())
abstract = abstract.strip()
if not abstract:
raise ValueError("Abstract is empty. Please provide a valid abstract.")
# Hash the query to use as a cache key
query_hash = hash_query(abstract)
# Check if the query result is in the cache
if query_hash in query_cache:
print("Cache hit for query")
log_query_and_results(query_id, abstract, query_cache[query_hash], cache_hit=True) # Log cache hit details
return query_cache[query_hash]
# Generate embedding for the query abstract
abstract_embedding = embed_text(abstract)
# Access the dataset's train split from the DatasetManager instance
train_dataset = dataset.dataset["train"]
# Search for similar papers using FAISS
scores, examples = train_dataset.get_nearest_examples("embedding", abstract_embedding, k=limit)
papers = []
for i in range(len(scores)):
paper_dict = {
"id": examples["id"][i],
"title": examples["title"][i],
"authors": examples["authors"][i],
"categories": examples["categories"][i],
"abstract": examples["abstract"][i],
"update_date": examples["update_date"][i],
"synergy_score": float(scores[i]),
}
papers.append(paper_dict)
# Log the query and results
log_query_and_results(query_id, abstract, papers)
# Store the result in the cache
query_cache[query_hash] = papers
save_cache()
return papers
def format_search_results_json(abstract: str) -> str:
"""Format search results as JSON for display"""
try:
papers = find_synergistic_papers(abstract, limit=10)
json_output = json.dumps(papers, indent=2)
except ValueError as e:
json_output = json.dumps({"error": str(e)}, indent=2)
return json_output
def format_search_results(abstract: str) -> tuple[pd.DataFrame, list[dict]]:
"""Format search results as a DataFrame for display"""
# Find papers synergistic with the given abstract
# papers = embedding_model.find_synergistic_papers(abstract)
try:
papers = find_synergistic_papers(abstract)
except ValueError as e:
error_message = str(e)
df = pd.DataFrame(
[{"Title": error_message, "Authors": "", "Categories": "", "Date": "", "Match Score": ""}]
)
return df, []
# Convert to DataFrame for display
df = pd.DataFrame(
[
{
"Title": p["title"],
"Authors": p["authors"][:50] + "..." if len(p["authors"]) > 50 else p["authors"],
"Categories": p["categories"],
"Date": p["update_date"],
"Match Score": f"{int(p['synergy_score'] * 100)}%",
"ID": p["id"], # Hidden column for reference
}
for p in papers
]
)
return df, papers # Return both DataFrame and original data
def format_paper_as_markdown(paper: dict) -> str:
# Convert category codes to full names, handling unknown categories
subjects = []
for subject in paper["categories"].split():
if subject in ARXIV_CATEGORIES_FLAT:
subjects.append(ARXIV_CATEGORIES_FLAT[subject])
else:
subjects.append(f"Unknown Category ({subject})")
paper["title"] = paper["title"].replace("\n", " ").strip()
paper["authors"] = paper["authors"].replace("\n", " ").strip()
return f"""# {paper["title"]}
### {paper["authors"]}
#### {', '.join(subjects)} | {paper["update_date"]} | **Score**: {int(paper['synergy_score'] * 100)}%
**[arxiv:{paper["id"]}](https://arxiv.org/abs/{paper["id"]})** - [PDF](https://arxiv.org/pdf/{paper["id"]})<br>
{paper["abstract"]}
"""
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
# {"left": "\\(", "right": "\\)", "display": False},
# {"left": "\\begin{equation}", "right": "\\end{equation}", "display": True},
# {"left": "\\begin{align}", "right": "\\end{align}", "display": True},
# {"left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True},
# {"left": "\\begin{gather}", "right": "\\end{gather}", "display": True},
# {"left": "\\begin{CD}", "right": "\\end{CD}", "display": True},
# {"left": "\\[", "right": "\\]", "display": True},
# {"left": "\\underline{", "right": "}", "display": False},
# {"left": "\\textit{", "right": "}", "display": False},
# {"left": "\\textit{", "right": "}", "display": False},
# {"left": "{", "right": "}", "display": False},
]
def create_interface():
# Create CSV loggers
analysis_logger = gr.CSVLogger()
paper_match_logger = gr.CSVLogger()
with gr.Blocks(
css="""
.cell-menu-button {
display: none;
}"""
) as demo:
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 1rem">
<h1>Inkling</h1>
<p>Discover papers with deep conceptual connections to your research</p>
<p>An experiment in AI-assisted research discovery and insight generation</p>
</div>
"""
)
with gr.Accordion(label="Instructions and Privacy Policy", open=False):
gr.Markdown(
"""
This tool helps you uncover research papers with **deep, meaningful connections** to your ideas.
It uses AI to go beyond keyword or semantic similarity β analyzing how papers relate **conceptually** and **contextually**,
even when the surface topics differ.
The focus is on surfacing *novel insights* β connections that may not be obvious at a glance,
but could **spark new perspectives**, **deepen understanding**, or **highlight relationships that might otherwise be overlooked**.
Itβs designed to act more like a research collaborator than a search engine β helping you explore conceptual bridges and
unexpected pathways in the literature.
Please ask any questions or provide feedback on the tool to help us improve it by starting a discussion on
the [Community Tab](https://huggingface.co/spaces/nomadicsynth/inkling/discussions).
**Privacy Policy**: Each query and the results returned will be logged for research and development purposes.
Additionally, the abstract or research description you provide will be included in any feedback
you submit and may be used to improve the model, and published in a public dataset.
Please ensure that you have the right to share this information.
By submitting a query and/or feedback, you agree to the use of this information for research purposes.
Do not include personally identifiable, proprietary, or sensitive information.
"""
)
gr.Markdown(
"""
1. **Enter Abstract**: Paste an abstract or describe your research question or idea in the text box.
2. **Find Related Papers**: Click the button to explore conceptually related research.
3. **Select a Paper**: Click on a row in the results table to view more details.
4. **Analyze Connection**: Click the analysis button to explore the potential connection between the papers.
5. **Insight Analysis**: Review the modelβs reasoning about how and why these papers may relate meaningfully.
"""
)
abstract_input = gr.Textbox(
label="Paper Abstract or Description",
placeholder="Paste an abstract or describe research details...",
lines=8,
key="abstract",
)
search_btn = gr.Button("Find Related Papers", variant="primary")
# Store full paper data
paper_data_state = gr.State([])
# Store query abstract
query_abstract_state = gr.State("")
# Store selected paper
selected_paper_state = gr.State(None)
# Use Dataframe for results
results_df = gr.Dataframe(
headers=["Title", "Authors", "Categories", "Date", "Match Score"],
datatype=["markdown", "markdown", "str", "date", "str"],
latex_delimiters=latex_delimiters,
label="Related Papers",
interactive=False,
wrap=False,
line_breaks=False,
column_widths=["40%", "20%", "20%", "10%", "10%", "0%"], # Hide ID column
key="results",
)
with gr.Row():
with gr.Column(scale=1):
paper_details_output = gr.Markdown(
value="# Paper Details",
label="Paper Details",
latex_delimiters=latex_delimiters,
show_copy_button=True,
key="paper_details",
)
analyze_btn = gr.Button("Analyze Connection", variant="primary", visible=False)
with gr.Accordion(label="Feedback and Flagging", open=True, visible=False) as paper_feedback_accordion:
gr.Markdown(
"""
Please provide feedback on the relevance of this paper to your input.
This helps us improve how well the system identifies meaningful research connections.
"""
)
paper_feedback = gr.Radio(
["π Good Match", "π Poor Match"],
label="Is this paper meaningfully related to your query?",
)
paper_expert = gr.Checkbox(label="I am an expert in this field", value=False)
paper_comment = gr.Textbox(label="Additional feedback on this match (optional)")
flag_paper_btn = gr.Button("Submit Paper Feedback")
with gr.Column(scale=1):
analysis_output = gr.Markdown(
value="# Connection Analysis",
label="Connection Analysis",
latex_delimiters=latex_delimiters,
show_copy_button=True,
key="analysis_output",
)
with gr.Accordion(
label="Feedback and Flagging", open=True, visible=False
) as analysis_feedback_accordion:
gr.Markdown(
"""
This connection analysis was generated by an AI model trained to reason about conceptual links between research papers.
If you find the explanation helpful, unclear, or off-base, your feedback will help refine the modelβs reasoning process.
"""
)
analysis_feedback = gr.Radio(
["π Helpful", "π Not Helpful"],
label="Was this explanation useful in understanding the connection?",
)
analysis_expert = gr.Checkbox(label="I am an expert in this field", value=False)
analysis_comment = gr.Textbox(label="Additional feedback on the analysis (optional)")
flag_analysis_btn = gr.Button("Submit Analysis Feedback")
# Hidden UI elements for API endpoint
abstract_input_hidden = gr.Textbox(visible=False, label="Abstract Input", key="abstract_hidden")
synergistic_papers_output = gr.Textbox(
visible=False, label="Synergistic Papers", key="synergistic_papers_output"
)
search_btn_hidden = gr.Button(visible=False, key="search_hidden")
# API endpoint for find_synergistic_papers
search_btn_hidden.click(
format_search_results_json,
inputs=[abstract_input_hidden],
outputs=[synergistic_papers_output],
api_name="find_synergistic_papers",
)
# Set up logging directories
flagged_paper_matches_path = data_path + "/flagged_paper_matches"
flagged_analyses_path = data_path + "/flagged_analyses"
os.makedirs(flagged_paper_matches_path, exist_ok=True)
os.makedirs(flagged_analyses_path, exist_ok=True)
# Set up loggers
paper_match_logger.setup(
[abstract_input, paper_details_output, paper_feedback, paper_expert, paper_comment],
flagged_paper_matches_path,
)
analysis_logger.setup(
[
abstract_input,
paper_details_output,
analysis_output,
analysis_feedback,
analysis_expert,
analysis_comment,
],
flagged_analyses_path,
)
# Display paper details when row is selected
def on_select(evt: gr.SelectData, papers, query):
selected_index = evt.index[0] # Get the row index
selected = papers[selected_index]
# Format paper details
details_md = format_paper_as_markdown(selected)
return details_md, selected
# Connect search button to the search function
search_btn.click(
format_search_results,
inputs=[abstract_input],
outputs=[results_df, paper_data_state],
api_name="search",
).then(
lambda x: x, # Identity function to pass through the abstract
inputs=[abstract_input],
outputs=[query_abstract_state],
api_name=False,
).then(
lambda: None, # Reset selected paper
outputs=[selected_paper_state],
api_name=False,
).then(
lambda: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
), # Hide analyze button and feedback accordions
outputs=[analyze_btn, paper_feedback_accordion, analysis_feedback_accordion],
api_name=False,
).then(
lambda: ("# Paper Details", "# Synergy Analysis"), # Clear previous outputs
outputs=[paper_details_output, analysis_output],
api_name=False,
)
# Use built-in select event from Dataframe
results_df.select(
on_select,
inputs=[paper_data_state, query_abstract_state],
outputs=[paper_details_output, selected_paper_state],
api_name=False,
).then(
lambda: (gr.update(visible=True), gr.update(visible=True)), # Show analyze button and feedback accordion
outputs=[analyze_btn, paper_feedback_accordion],
api_name=False,
)
# Connect analyze button to run analysis
analyze_btn.click(
analyse_abstracts,
inputs=[query_abstract_state, selected_paper_state],
outputs=[analysis_output],
show_progress_on=[paper_details_output, analysis_output],
api_name=False,
).then(
lambda: gr.update(visible=True), # Show feedback accordion
outputs=[analysis_feedback_accordion],
api_name=False,
)
# Add flagging handlers
flag_paper_btn.click(
lambda *args: paper_match_logger.flag(list(args)),
inputs=[abstract_input, paper_details_output, paper_feedback, paper_expert, paper_comment],
preprocess=False,
api_name=False,
)
flag_analysis_btn.click(
lambda *args: analysis_logger.flag(list(args)),
inputs=[
abstract_input,
paper_details_output,
analysis_output,
analysis_feedback,
analysis_expert,
analysis_comment,
],
preprocess=False,
api_name=False,
)
return demo
if __name__ == "__main__":
# Initialize the embedding model
embedding_model = init_embedding_model(embedding_model_name, embedding_model_revision)
# Initialize the reasoning model
reasoning_model = init_reasoning_model(reasoning_model_id)
# Load dataset with FAISS index
dataset = DatasetManager(
embedding_model=embedding_model,
)
demo = create_interface()
demo.queue(api_open=False).launch(ssr_mode=False, show_api=True)
|