File size: 21,836 Bytes
e6a1391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import json
import os

import faiss
import gradio as gr
import pandas as pd
import spaces
import torch
from datasets import load_dataset
from huggingface_hub import InferenceClient, hf_hub_download
from huggingface_hub import login as hf_hub_login
from huggingface_hub import upload_file
from sentence_transformers import SentenceTransformer

from arxiv_stuff import ARXIV_CATEGORIES_FLAT

# Get HF_TOKEN from environment variables
HF_TOKEN = os.getenv("HF_TOKEN")

# Login to Hugging Face Hub
hf_hub_login(token=HF_TOKEN, add_to_git_credential=True)

# Dataset details
dataset_name = "nomadicsynth/arxiv-dataset-abstract-embeddings"
dataset_revision = "v1.0.0"
local_index_path = "arxiv_faiss_index.faiss"

# Embedding model details
embedding_model_name = "nomadicsynth/research-compass-arxiv-abstracts-embedding-model"
embedding_model_revision = "2025-01-28_23-06-17-1epochs-12batch-32eval-512embed-final"

# Amalysis model details

# Settings for Llama-3.3-70B-Instruct
reasoning_model_id = "meta-llama/Llama-3.3-70B-Instruct"
max_length = 1024 * 4
temperature = None
top_p = None
presence_penalty = None

# Settings for QwQ-32B
# reasoning_model_id = "Qwen/QwQ-32B"
# reasoning_start_tag = "<think>"
# reasoning_end_tag = "</think>"
# max_length = 1024 * 4
# temperature = 0.6
# top_p = 0.95
# presence_penalty = 0.1

# Global variables
dataset = None
embedding_model = None
reasoning_model = None


def save_faiss_index_to_hub():
    """Save the FAISS index to the Hub for easy access"""
    global dataset, local_index_path
    # 1. Save the index to a local file
    dataset["train"].save_faiss_index("embedding", local_index_path)
    print(f"FAISS index saved locally to {local_index_path}")

    # 2. Upload the index file to the Hub
    remote_path = upload_file(
        path_or_fileobj=local_index_path,
        path_in_repo=local_index_path,  # Same name on the Hub
        repo_id=dataset_name,  # Use your dataset repo
        token=HF_TOKEN,
        repo_type="dataset",  # This is a dataset file
        revision=dataset_revision,  # Use the same revision as the dataset
        commit_message="Add FAISS index",  # Commit message
    )

    print(f"FAISS index uploaded to Hub at {remote_path}")

    # Remove the local file. It's now stored on the Hub.
    os.remove(local_index_path)


def setup_dataset():
    """Load dataset with FAISS index"""
    global dataset
    print("Loading dataset from Hugging Face...")

    # Load dataset
    dataset = load_dataset(
        dataset_name,
        revision=dataset_revision,
    )

    # Try to load the index from the Hub
    try:
        print("Downloading pre-built FAISS index...")
        index_path = hf_hub_download(
            repo_id=dataset_name,
            filename="arxiv_faiss_index.faiss",
            revision=dataset_revision,
            token=HF_TOKEN,
            repo_type="dataset",
        )

        print("Loading pre-built FAISS index...")
        dataset["train"].load_faiss_index("embedding", index_path)
        print("Pre-built FAISS index loaded successfully")

    except Exception as e:
        print(f"Could not load pre-built index: {e}")
        print("Building new FAISS index...")

        # Add FAISS index if it doesn't exist
        if not dataset["train"].features.get("embedding"):
            print("Dataset doesn't have 'embedding' column, cannot create FAISS index")
            raise ValueError("Dataset doesn't have 'embedding' column")

        dataset["train"].add_faiss_index(
            column="embedding",
            metric_type=faiss.METRIC_INNER_PRODUCT,
            string_factory="HNSW,RFlat",  # Using reranking
        )

        # Save the FAISS index to the Hub
        save_faiss_index_to_hub()

    print(f"Dataset loaded with {len(dataset['train'])} items and FAISS index ready")


def init_embedding_model(model_name_or_path: str, model_revision: str = None) -> SentenceTransformer:
    global embedding_model

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    embedding_model = SentenceTransformer(
        model_name_or_path,
        revision=model_revision,
        token=HF_TOKEN,
        device=device,
    )


def init_reasoning_model(model_name: str) -> InferenceClient:
    global reasoning_model
    reasoning_model = InferenceClient(
        model=model_name,
        provider="hf-inference",
        api_key=HF_TOKEN,
    )
    return reasoning_model


def generate(messages: list[dict[str, str]]) -> str:
    """
    Generate a response to a list of messages.

    Args:
        messages: A list of message dictionaries with a "role" and "content" key.

    Returns:
        The generated response as a string.
    """
    global reasoning_model

    system_message = {
        "role": "system",
        "content": "You are an expert in evaluating connections between research papers.",
    }

    messages.insert(0, system_message)

    response_schema = r"""{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Generated schema for Root",
  "type": "object",
  "properties": {
    "reasoning": {
      "type": "string"
    },
    "key_connections": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "connection": {
            "type": "string"
          },
          "description": {
            "type": "string"
          }
        },
        "required": [
          "connection",
          "description"
        ]
      }
    },
    "synergies_and_complementarities": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "type": {
            "type": "array",
            "items": {
              "type": "string"
            }
          },
          "description": {
            "type": "string"
          }
        },
        "required": [
          "type",
          "description"
        ]
      }
    },
    "research_potential": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "potential": {
            "type": "string"
          },
          "description": {
            "type": "string"
          }
        },
        "required": [
          "potential",
          "description"
        ]
      }
    },
    "rating": {
      "type": "number"
    },
    "confidence": {
      "type": "number"
    }
  },
  "required": [
    "reasoning",
    "key_connections",
    "synergies_and_complementarities",
    "research_potential",
    "rating",
    "confidence"
  ]
}"""

    response_format = {
        "type": "json",
        "value": response_schema,
    }

    result = reasoning_model.chat.completions.create(
        messages=messages,
        max_tokens=max_length,
        temperature=temperature,
        presence_penalty=presence_penalty,
        response_format=response_format,
        top_p=top_p,
    )

    output = result.choices[0].message.content.strip()
    return output


@spaces.GPU
def embed_text(text: str | list[str]) -> torch.Tensor:
    global embedding_model

    # Strip any leading/trailing whitespace
    text = text.strip() if isinstance(text, str) else [t.strip() for t in text]
    embed_text = embedding_model.encode(text, normalize_embeddings=True)  # Ensure vectors are normalized
    return embed_text


def analyse_abstracts(query_abstract: str, compare_abstract: dict) -> str:
    """Analyze the relationship between two abstracts and return formatted analysis"""
    # Highlight the synergies in thesede papers that would justify further research
    messages = [
        {
            "role": "user",
            "content": f"""You are trained in evaluating connections between research papers. Please **identify and analyze the links** between these two papers:

Paper 1 Abstract:
{query_abstract}

Paper 2 Abstract:
{compare_abstract["abstract"]}

Consider the following aspects in your evaluation:

* **Methodological Cross-Pollination**: How do the methods or approaches from one paper **directly enhance or inform** the other?
* **Principle or Mechanism Extension**: Do the papers **share underlying principles or mechanisms** that can be **combined or extended** to yield new insights?
* **Interdisciplinary Connections**: Are there **clear opportunities** for interdisciplinary collaborations or knowledge transfer between the two papers?
* **Solution or Application Bridge**: Can the solutions or applications presented in one paper be **directly adapted or integrated** with the other to create **novel, actionable outcomes**?

Consider the connections in either direction, that is, from Paper 1 -> Paper 2, or vice versa, from Paper 2 -> Paper 1

Return a valid JSON object with this structure:
{{
    "reasoning": "Step-by-step analysis of the papers, highlighting **key established connections**, identified synergies, and **concrete complementarities**. Emphasize the most **critical, actionable insights** or **key takeaways** from the analysis using markdown bold.",

    # Main connecting concepts, methods, or principles
    "key_connections": [
        {{
            "connection": "connection 1",
            "description": "Brief description (1-2 sentences) for the **established connection**, explaining its **direct relevance** to the synergy analysis."
        }},
       ...
    ],

    "synergies_and_complementarities": [
        {{
            "type": ["Methodological Cross-Pollination", "Principle or Mechanism Extension", "Interdisciplinary Connections", "Solution or Application Bridge"],  # Choose only one type per entry, and only include relevant types to this analysis
            "description": "Brief explanation (1-2 sentences) of the **identified, concrete synergy** or **complementarity**, and a **specific, actionable example** to illustrate the concept."
        }},
      ...
    ],

    # Novel, actionable outcomes or applications emerging from the synergies
    "research_potential": [
        {{
            "potential": "Actionable outcome or application 1",
            "description": "Brief description (1-2 sentences) of the **concrete potential outcome** or **application**, and a **specific scenario** to illustrate its **direct impact**."
        }},
       ...
    ],

    "rating": 1-5,  # Overall rating of the papers' synergy potential, where:
                      # 1 = **No synergy or connection** (definitely no link between the papers)
                      # 2 = **Low potential for synergy** (some vague or speculative connection, but highly uncertain)
                      # 3 = **Plausible synergy potential** (some potential connections, but requiring further investigation to confirm)
                      # 4 = **Established synergy with potential for growth** (clear connections with opportunities for further development)
                      # 5 = **High established synergy with direct, clear opportunities** (strong, concrete links with immediate, actionable outcomes)

    "confidence": 0.0-1.0,  # Confidence in your analysis, as a floating-point value representing the probability of your assessment being accurate
}}

Return only the JSON object, with double quotes around key names and all string values.""",
        },
    ]

    # Generate analysis
    try:
        output = generate(messages)
    except Exception as e:
        return f"Error: {e}"

    # Parse the JSON output
    try:
        output = json.loads(output)
    except Exception as e:
        return f"Error: {e}"

    # Format the output as markdown for better display
    key_connections = ""
    synergies_and_complementarities = ""
    research_potential = ""
    if "key_connections" in output:
        for connection in output["key_connections"]:
            key_connections += f"- {connection['connection']}: {connection['description']}\n"

    if "synergies_and_complementarities" in output:
        for synergy in output["synergies_and_complementarities"]:
            synergies_and_complementarities += f"- {', '.join(synergy['type'])}: {synergy['description']}\n"

    if "research_potential" in output:
        for potential in output["research_potential"]:
            research_potential += f"- {potential['potential']}: {potential['description']}\n"

    formatted_output = f"""## Synergy Analysis

**Rating**: {'β˜…' * output['rating']}{'β˜†' * (5-output['rating'])}        **Confidence**: {'β˜…' * round(output['confidence'] * 5)}{'β˜†' * round((1-output['confidence']) * 5)}

### Key Connections
{key_connections}

### Synergies and Complementarities
{synergies_and_complementarities}

### Research Potential
{research_potential}

### Reasoning
{output['reasoning']}
"""
    return formatted_output
    # return '```"""\n' + output + '\n"""```'


# arXiv Embedding Dataset Details
# DatasetDict({
#     train: Dataset({
#         features: ['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi', 'report-no', 'categories', 'license', 'abstract', 'update_date', 'embedding', 'timestamp', 'embedding_model'],
#         num_rows: 2689088
#     })
# })


def find_synergistic_papers(abstract: str, limit=25) -> list[dict]:
    """Find papers synergistic with the given abstract using FAISS with cosine similarity"""
    global dataset

    # Generate embedding for the query abstract (normalized for cosine similarity)
    abstract_embedding = embed_text(abstract)

    # Search for similar papers using FAISS with inner product (cosine similarity for normalized vectors)
    scores, examples = dataset["train"].get_nearest_examples("embedding", abstract_embedding, k=limit)

    papers = []
    for i in range(len(scores)):
        # With cosine similarity, higher scores are better (closer to 1)
        paper_dict = {
            "id": examples["id"][i],
            "title": examples["title"][i],
            "authors": examples["authors"][i],
            "categories": examples["categories"][i],
            "abstract": examples["abstract"][i],
            "update_date": examples["update_date"][i],
            "synergy_score": float(scores[i]),  # Convert to float for serialization
        }
        papers.append(paper_dict)

    return papers


def format_search_results(abstract: str) -> tuple[pd.DataFrame, list[dict]]:
    """Format search results as a DataFrame for display"""
    # Find papers synergistic with the given abstract
    papers = find_synergistic_papers(abstract)

    # Convert to DataFrame for display
    df = pd.DataFrame(
        [
            {
                "Title": p["title"],
                "Authors": p["authors"][:50] + "..." if len(p["authors"]) > 50 else p["authors"],
                "Categories": p["categories"],
                "Date": p["update_date"],
                "Match Score": f"{int(p['synergy_score'] * 100)}%",
                "ID": p["id"],  # Hidden column for reference
            }
            for p in papers
        ]
    )

    return df, papers  # Return both DataFrame and original data


def format_paper_as_markdown(paper: dict) -> str:
    # Convert category codes to full names, handling unknown categories
    subjects = []
    for subject in paper["categories"].split():
        if subject in ARXIV_CATEGORIES_FLAT:
            subjects.append(ARXIV_CATEGORIES_FLAT[subject])
        else:
            subjects.append(f"Unknown Category ({subject})")

    paper["title"] = paper["title"].replace("\n", " ").strip()
    paper["authors"] = paper["authors"].replace("\n", " ").strip()

    return f"""# {paper["title"]}
### {paper["authors"]}
#### {', '.join(subjects)} | {paper["update_date"]} | **Score**: {int(paper['synergy_score'] * 100)}%
**[arxiv:{paper["id"]}](https://arxiv.org/abs/{paper["id"]})** - [PDF](https://arxiv.org/pdf/{paper["id"]})<br>

{paper["abstract"]}
"""


latex_delimiters = [
    {"left": "$$", "right": "$$", "display": True},
    # {"left": "$", "right": "$", "display": False},
    # {"left": "\\(", "right": "\\)", "display": False},
    # {"left": "\\begin{equation}", "right": "\\end{equation}", "display": True},
    # {"left": "\\begin{align}", "right": "\\end{align}", "display": True},
    # {"left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True},
    # {"left": "\\begin{gather}", "right": "\\end{gather}", "display": True},
    # {"left": "\\begin{CD}", "right": "\\end{CD}", "display": True},
    # {"left": "\\[", "right": "\\]", "display": True},
    # {"left": "\\underline{", "right": "}", "display": False},
    # {"left": "\\textit{", "right": "}", "display": False},
    # {"left": "\\textit{", "right": "}", "display": False},
    # {"left": "{", "right": "}", "display": False},
]


def create_interface():
    with gr.Blocks(
        css="""
    .cell-menu-button {
        display: none;
    }"""
    ) as demo:
        gr.HTML(
            """
            <div style="text-align: center; margin-bottom: 1rem">
                <h1>Research Compass</h1>
                <p>Find synergistic papers to enrich your research</p>
                <p>An experiment in AI-driven research synergy analysis</p>
            </div>
        """
        )

        with gr.Accordion(label="Instructions", open=False):
            gr.Markdown(
                """
                1. **Enter Abstract**: Paste an abstract or describe your research details in the text box.
                2. **Search for Synergistic Papers**: Click the button to find papers with similar themes.
                3. **Select a Paper**: Click on a row in the results table to view paper details.
                4. **Analyze Connection Potential**: Click the button to analyze the synergy potential between the papers.
                5. **Synergy Analysis**: View the detailed analysis of the connection potential between the papers.
                """
            )

        abstract_input = gr.Textbox(
            label="Paper Abstract or Description",
            placeholder="Paste an abstract or describe research details...",
            lines=8,
            key="abstract",
        )
        search_btn = gr.Button("Search for Synergistic Papers", variant="primary")

        # Store full paper data
        paper_data_state = gr.State([])

        # Store query abstract
        query_abstract_state = gr.State("")

        # Store selected paper
        selected_paper_state = gr.State(None)

        # Use Dataframe for results
        results_df = gr.Dataframe(
            headers=["Title", "Authors", "Categories", "Date", "Match Score"],
            datatype=["markdown", "markdown", "str", "date", "str"],
            latex_delimiters=latex_delimiters,
            label="Synergistic Papers",
            interactive=False,
            wrap=False,
            line_breaks=False,
            column_widths=["40%", "20%", "20%", "10%", "10%", "0%"],  # Hide ID column
            key="results",
        )

        with gr.Row():
            with gr.Column(scale=1):
                paper_details_output = gr.Markdown(
                    value="# Paper Details",
                    label="Paper Details",
                    latex_delimiters=latex_delimiters,
                    show_copy_button=True,
                    key="paper_details",
                )
                analyze_btn = gr.Button("Analyze Connection Potential", variant="primary", interactive=False)
            with gr.Column(scale=1):
                # Analysis output
                analysis_output = gr.Markdown(
                    value="# Synergy Analysis",
                    label="Synergy Analysis",
                    latex_delimiters=latex_delimiters,
                    show_copy_button=True,
                    key="analysis_output",
                )

        # Display paper details when row is selected
        def on_select(evt: gr.SelectData, papers, query):
            selected_index = evt.index[0]  # Get the row index
            selected = papers[selected_index]

            # Format paper details
            details_md = format_paper_as_markdown(selected)

            return details_md, selected

        # Connect search button to the search function
        search_btn.click(
            format_search_results,
            inputs=[abstract_input],
            outputs=[results_df, paper_data_state],
        ).then(
            lambda x: x,  # Identity function to pass through the abstract
            inputs=[abstract_input],
            outputs=[query_abstract_state],
        ).then(
            lambda: None,  # Reset selected paper
            outputs=[selected_paper_state],
        ).then(
            lambda: gr.update(interactive=False),  # Disable analyze button until paper selected
            outputs=[analyze_btn],
        ).then(
            lambda: "# Synergy Analysis",  # Clear previous analysis
            outputs=[analysis_output],
        )

        # Use built-in select event from Dataframe
        results_df.select(
            on_select,
            inputs=[paper_data_state, query_abstract_state],
            outputs=[paper_details_output, selected_paper_state],
        ).then(
            lambda: gr.update(interactive=True),  # Enable analyze button when paper selected
            outputs=[analyze_btn],
        )

        # Connect analyze button to run analysis
        analyze_btn.click(
            analyse_abstracts,
            inputs=[query_abstract_state, selected_paper_state],
            outputs=[analysis_output],
            show_progress_on=[paper_details_output, analysis_output],
        )

    return demo


if __name__ == "__main__":
    # Load dataset with FAISS index
    setup_dataset()

    # Initialize the embedding model
    init_embedding_model(embedding_model_name, embedding_model_revision)

    # Initialize the reasoning model
    reasoning_model = init_reasoning_model(reasoning_model_id)

    demo = create_interface()
    demo.queue().launch(ssr_mode=False)