import datetime import json import os import uuid import hashlib import pickle import gradio as gr import pandas as pd import spaces import torch from swanson_style_prompt import generate_swanson_style_prompt, get_json_schema from huggingface_hub import InferenceClient from sentence_transformers import SentenceTransformer from arxiv_stuff import ARXIV_CATEGORIES_FLAT from dataset_utils import DatasetManager # Get HF_TOKEN from environment variables HF_TOKEN = os.getenv("HF_TOKEN") # Check if using persistent storage persistent_storage = os.path.exists("/data") if persistent_storage: # Use persistent storage print("Using persistent storage") data_path = "/data" else: # Use local storage print("Using local storage") data_path = "./data" # Embedding model details embedding_model_name = "nomadicsynth/research-compass-arxiv-abstracts-embedding-model" embedding_model_revision = "2025-01-28_23-06-17-1epochs-12batch-32eval-512embed-final" # Amalysis model details # Settings for Llama-3.3-70B-Instruct # reasoning_model_id = "meta-llama/Llama-3.3-70B-Instruct" reasoning_model_id = "mistralai/Mistral-7B-Instruct-v0.3" max_length = 1024 * 4 temperature = None top_p = None presence_penalty = None # Settings for QwQ-32B # reasoning_model_id = "Qwen/QwQ-32B" # reasoning_start_tag = "" # reasoning_end_tag = "" # max_length = 1024 * 4 # temperature = 0.6 # top_p = 0.95 # presence_penalty = 0.1 # Global variables dataset = None embedding_model = None reasoning_model = None # Define a cache file path cache_file = os.path.join(data_path, "query_cache.pkl") # Load cache from file if it exists if os.path.exists(cache_file): with open(cache_file, "rb") as f: query_cache = pickle.load(f) else: query_cache = {} def hash_query(query: str) -> str: """Generate a unique hash for the query.""" return hashlib.sha256(query.encode("utf-8")).hexdigest() def save_cache(): """Save the cache to a file.""" with open(cache_file, "wb") as f: pickle.dump(query_cache, f) def init_embedding_model( model_name_or_path: str, model_revision: str = None, hf_token: str = None ) -> SentenceTransformer: """ Initialize the embedding model with the specified model name or path and revision. Args: model_name_or_path (str): The name or path of the model. model_revision (str): The revision of the model. hf_token (str): The Hugging Face token for authentication. Returns: SentenceTransformer: The initialized embedding model. """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") embedding_model = SentenceTransformer( model_name_or_path, revision=model_revision, token=hf_token, device=device, ) return embedding_model @spaces.GPU def embed_text(text: str | list[str]) -> torch.Tensor: """ Generate embeddings for the given text using the embedding model. Args: text (str | list[str]): The text or list of texts to embed. Returns: torch.Tensor: The generated embeddings. """ global embedding_model # Strip any leading/trailing whitespace text = text.strip() if isinstance(text, str) else [t.strip() for t in text] embed_text = embedding_model.encode(text, normalize_embeddings=True) # Ensure vectors are normalized return embed_text def init_reasoning_model(model_name: str) -> InferenceClient: global reasoning_model reasoning_model = InferenceClient( model=model_name, provider="hf-inference", api_key=HF_TOKEN, ) return reasoning_model def generate(messages: list[dict[str, str]]) -> str: """ Generate a response to a list of messages. Args: messages: A list of message dictionaries with a "role" and "content" key. Returns: The generated response as a string. """ global reasoning_model system_message = { "role": "system", "content": "You are an expert in evaluating connections between research papers.", } messages.insert(0, system_message) response_schema = get_json_schema() response_format = { "type": "json", "value": response_schema, } result = reasoning_model.chat.completions.create( messages=messages, max_tokens=max_length, temperature=temperature, presence_penalty=presence_penalty, response_format=response_format, top_p=top_p, ) output = result.choices[0].message.content.strip() return output def analyse_abstracts(query_abstract: str, compare_abstract: dict) -> str: """Analyze the relationship between two abstracts and return formatted analysis""" global reasoning_model # Check if the compare_abstract is valid if not isinstance(compare_abstract, dict) or "abstract" not in compare_abstract: return "Invalid compare_abstract format. Expected a dictionary with 'abstract' key." if not query_abstract or not compare_abstract["abstract"]: return "Invalid input. Please provide both query_abstract and compare_abstract." # Check if the query_abstract is a string if not isinstance(query_abstract, str): return "Invalid query_abstract format. Expected a string." # Check if the compare_abstract is a string if not isinstance(compare_abstract["abstract"], str): return "Invalid compare_abstract format. Expected a string." # Check if the query_abstract is empty if not query_abstract.strip(): return "Invalid query_abstract format. Expected a non-empty string." # Check if the compare_abstract is empty if not compare_abstract["abstract"].strip(): return "Invalid compare_abstract format. Expected a non-empty string." messages = generate_swanson_style_prompt(query_abstract, compare_abstract["abstract"]) # Generate analysis try: output = generate(messages) except Exception as e: return f"Error: {e}" # Parse the JSON output try: output = json.loads(output) except Exception as e: return f"Error: {e}" # Format the output as markdown formatted_output = "# Connection Analysis\n" if "bridge_exists" in output and output["bridge_exists"] is False: formatted_output += "There is no bridge between the two papers." formatted_output += "## Explanation\n" + output.get("bridge_explanation", "No explanation provided.") elif "bridge_exists" in output and output["bridge_exists"] is True: formatted_output += "## Bridge Concept\n" + output.get("bridge_concept", "Unknown") formatted_output += "\n## Explanation\n" + output.get("bridge_explanation", "No explanation provided.") formatted_output += "\n## Hypothesis\n" + output.get("hypothesis", "No hypothesis provided.") else: formatted_output = "Invalid output format. Please check the model's response: " + output return formatted_output # arXiv Embedding Dataset Details # DatasetDict({ # train: Dataset({ # features: ['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi', 'report-no', 'categories', 'license', 'abstract', 'update_date', 'embedding', 'timestamp', 'embedding_model'], # num_rows: 2689088 # }) # }) def log_query_and_results(query_id: str, query: str, results: list[dict], cache_hit: bool = False): """Log the query and results to a file, including whether it was a cache hit.""" log_entry = { "timestamp": datetime.datetime.now().isoformat(), "query_id": query_id, "query": query, "results": results, "cache_hit": cache_hit, } log_file = os.path.join(data_path, "query_results_log.jsonl") with open(log_file, "a") as f: f.write(json.dumps(log_entry) + "\n") # Print a short summary of the log entry with timestamp cache_status = "Cache Hit" if cache_hit else "Cache Miss" print(f"[{log_entry['timestamp']}] Query ID: {query_id}, Results Count: {len(results)}, Status: {cache_status}") def find_synergistic_papers(abstract: str, limit=25) -> list[dict]: """Find papers synergistic with the given abstract using FAISS with cosine similarity""" global dataset # Generate a unique ID for the query query_id = str(uuid.uuid4()) # Normalize the abstract for cosine similarity abstract = abstract.replace("\n", " ") abstract = " ".join(abstract.split()) abstract = abstract.strip() if not abstract: raise ValueError("Abstract is empty. Please provide a valid abstract.") # Hash the query to use as a cache key query_hash = hash_query(abstract) # Check if the query result is in the cache if query_hash in query_cache: print("Cache hit for query") log_query_and_results(query_id, abstract, query_cache[query_hash], cache_hit=True) # Log cache hit details return query_cache[query_hash] # Generate embedding for the query abstract abstract_embedding = embed_text(abstract) # Access the dataset's train split from the DatasetManager instance train_dataset = dataset.dataset["train"] # Search for similar papers using FAISS scores, examples = train_dataset.get_nearest_examples("embedding", abstract_embedding, k=limit) papers = [] for i in range(len(scores)): paper_dict = { "id": examples["id"][i], "title": examples["title"][i], "authors": examples["authors"][i], "categories": examples["categories"][i], "abstract": examples["abstract"][i], "update_date": examples["update_date"][i], "synergy_score": float(scores[i]), } papers.append(paper_dict) # Log the query and results log_query_and_results(query_id, abstract, papers) # Store the result in the cache query_cache[query_hash] = papers save_cache() return papers def format_search_results_json(abstract: str) -> str: """Format search results as JSON for display""" try: papers = find_synergistic_papers(abstract, limit=10) json_output = json.dumps(papers, indent=2) except ValueError as e: json_output = json.dumps({"error": str(e)}, indent=2) return json_output def format_search_results(abstract: str) -> tuple[pd.DataFrame, list[dict]]: """Format search results as a DataFrame for display""" # Find papers synergistic with the given abstract # papers = embedding_model.find_synergistic_papers(abstract) try: papers = find_synergistic_papers(abstract) except ValueError as e: error_message = str(e) df = pd.DataFrame( [{"Error": error_message}] ) return df, [] # Convert to DataFrame for display df = pd.DataFrame( [ { "Title": p["title"], "Authors": p["authors"][:50] + "..." if len(p["authors"]) > 50 else p["authors"], "Categories": p["categories"], "Date": p["update_date"], "Match Score": f"{int(p['synergy_score'] * 100)}%", "ID": p["id"], # Hidden column for reference } for p in papers ] ) return df, papers # Return both DataFrame and original data def format_paper_as_markdown(paper: dict) -> str: # Convert category codes to full names, handling unknown categories subjects = [] for subject in paper["categories"].split(): if subject in ARXIV_CATEGORIES_FLAT: subjects.append(ARXIV_CATEGORIES_FLAT[subject]) else: subjects.append(f"Unknown Category ({subject})") paper["title"] = paper["title"].replace("\n", " ").strip() paper["authors"] = paper["authors"].replace("\n", " ").strip() return f"""# {paper["title"]} ### {paper["authors"]} #### {', '.join(subjects)} | {paper["update_date"]} | **Score**: {int(paper['synergy_score'] * 100)}% **[arxiv:{paper["id"]}](https://arxiv.org/abs/{paper["id"]})** - [PDF](https://arxiv.org/pdf/{paper["id"]})
{paper["abstract"]} """ latex_delimiters = [ {"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False}, # {"left": "\\(", "right": "\\)", "display": False}, # {"left": "\\begin{equation}", "right": "\\end{equation}", "display": True}, # {"left": "\\begin{align}", "right": "\\end{align}", "display": True}, # {"left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True}, # {"left": "\\begin{gather}", "right": "\\end{gather}", "display": True}, # {"left": "\\begin{CD}", "right": "\\end{CD}", "display": True}, # {"left": "\\[", "right": "\\]", "display": True}, # {"left": "\\underline{", "right": "}", "display": False}, # {"left": "\\textit{", "right": "}", "display": False}, # {"left": "\\textit{", "right": "}", "display": False}, # {"left": "{", "right": "}", "display": False}, ] def create_interface(): # Create CSV loggers analysis_logger = gr.CSVLogger() paper_match_logger = gr.CSVLogger() with gr.Blocks( css=""" .cell-menu-button { display: none; }""" ) as demo: with gr.Tabs(): with gr.Tab("Home"): gr.HTML( """

Inkling

Discover papers with deep conceptual connections to your research

An experiment in AI-assisted research discovery and insight generation

""" ) with gr.Accordion(label="Instructions and Privacy Policy", open=False): gr.Markdown( """ This tool helps you uncover research papers with **deep, meaningful connections** to your ideas. It uses AI to go beyond keyword or semantic similarity — analyzing how papers relate **conceptually** and **contextually**, even when the surface topics differ. The focus is on surfacing *novel insights* — connections that may not be obvious at a glance, but could **spark new perspectives**, **deepen understanding**, or **highlight relationships that might otherwise be overlooked**. It’s designed to act more like a research collaborator than a search engine — helping you explore conceptual bridges and unexpected pathways in the literature. Please ask any questions or provide feedback on the tool to help us improve it by starting a discussion on the [Community Tab](https://huggingface.co/spaces/nomadicsynth/inkling/discussions). **Privacy Policy**: Each query and the results returned will be logged for research and development purposes. Additionally, the abstract or research description you provide will be included in any feedback you submit and may be used to improve the model, and published in a public dataset. Please ensure that you have the right to share this information. By submitting a query and/or feedback, you agree to the use of this information for research purposes. Do not include personally identifiable, proprietary, or sensitive information. """ ) gr.Markdown( """ 1. **Enter Abstract**: Paste an abstract or describe your research question or idea in the text box. 2. **Find Related Papers**: Click the button to explore conceptually related research. 3. **Select a Paper**: Click on a row in the results table to view more details. 4. **Analyze Connection**: Click the analysis button to explore the potential connection between the papers. 5. **Insight Analysis**: Review the model’s reasoning about how and why these papers may relate meaningfully. """ ) abstract_input = gr.Textbox( label="Paper Abstract or Description", placeholder="Paste an abstract or describe research details...", lines=8, key="abstract", ) search_btn = gr.Button("Find Related Papers", variant="primary") # Store full paper data paper_data_state = gr.State([]) # Store query abstract query_abstract_state = gr.State("") # Store selected paper selected_paper_state = gr.State(None) # Use Dataframe for results results_df = gr.Dataframe( headers=["Title", "Authors", "Categories", "Date", "Match Score"], datatype=["markdown", "markdown", "str", "date", "str"], latex_delimiters=latex_delimiters, label="Related Papers", interactive=False, wrap=False, line_breaks=False, column_widths=["40%", "20%", "20%", "10%", "10%", "0%"], # Hide ID column key="results", ) with gr.Row(): with gr.Column(scale=1): paper_details_output = gr.Markdown( value="# Paper Details", label="Paper Details", latex_delimiters=latex_delimiters, show_copy_button=True, key="paper_details", ) analyze_btn = gr.Button("Analyze Connection", variant="primary", visible=False) with gr.Accordion(label="Feedback and Flagging", open=True, visible=False) as paper_feedback_accordion: gr.Markdown( """ Please provide feedback on the relevance of this paper to your input. This helps us improve how well the system identifies meaningful research connections. """ ) paper_feedback = gr.Radio( ["👍 Good Match", "👎 Poor Match"], label="Is this paper meaningfully related to your query?", ) paper_expert = gr.Checkbox(label="I am an expert in this field", value=False) paper_comment = gr.Textbox(label="Additional feedback on this match (optional)") flag_paper_btn = gr.Button("Submit Paper Feedback") with gr.Column(scale=1): analysis_output = gr.Markdown( value="# Connection Analysis", label="Connection Analysis", latex_delimiters=latex_delimiters, show_copy_button=True, key="analysis_output", ) with gr.Accordion( label="Feedback and Flagging", open=True, visible=False ) as analysis_feedback_accordion: gr.Markdown( f""" This connection analysis was generated by an LLM, `{reasoning_model_id}`. Please provide feedback on the quality of the analysis. This helps us improve how well the system identifies meaningful research connections. - **Helpful**: The explanation clarifies the connection between the papers. The connection is plausible and relevant. - **Not Helpful**: The explanation is unclear or incorrect. The connection is spurious or irrelevant. """ ) analysis_feedback = gr.Radio( ["👍 Helpful", "👎 Not Helpful"], label="Was this explanation useful in understanding the connection?", ) analysis_expert = gr.Checkbox(label="I am an expert in this field", value=False) analysis_comment = gr.Textbox(label="Additional feedback on the analysis (optional)") flag_analysis_btn = gr.Button("Submit Analysis Feedback") # Hidden UI elements for API endpoint abstract_input_hidden = gr.Textbox(visible=False, label="Abstract Input", key="abstract_hidden") synergistic_papers_output = gr.Textbox( visible=False, label="Synergistic Papers", key="synergistic_papers_output" ) search_btn_hidden = gr.Button(visible=False, key="search_hidden") # API endpoint for find_synergistic_papers search_btn_hidden.click( format_search_results_json, inputs=[abstract_input_hidden], outputs=[synergistic_papers_output], api_name="find_synergistic_papers", ) # Set up logging directories flagged_paper_matches_path = data_path + "/flagged_paper_matches" flagged_analyses_path = data_path + "/flagged_analyses" os.makedirs(flagged_paper_matches_path, exist_ok=True) os.makedirs(flagged_analyses_path, exist_ok=True) # Set up loggers paper_match_logger.setup( [abstract_input, paper_details_output, paper_feedback, paper_expert, paper_comment], flagged_paper_matches_path, ) analysis_logger.setup( [ abstract_input, paper_details_output, analysis_output, analysis_feedback, analysis_expert, analysis_comment, ], flagged_analyses_path, ) # Display paper details when row is selected def on_select(evt: gr.SelectData, papers, query): selected_index = evt.index[0] # Get the row index selected = papers[selected_index] # Format paper details details_md = format_paper_as_markdown(selected) return details_md, selected # Connect search button to the search function search_btn.click( format_search_results, inputs=[abstract_input], outputs=[results_df, paper_data_state], api_name="search", ).then( lambda x: x, # Identity function to pass through the abstract inputs=[abstract_input], outputs=[query_abstract_state], api_name=False, ).then( lambda: None, # Reset selected paper outputs=[selected_paper_state], api_name=False, ).then( lambda: ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), ), # Hide analyze button and feedback accordions outputs=[analyze_btn, paper_feedback_accordion, analysis_feedback_accordion], api_name=False, ).then( lambda: ("# Paper Details", "# Connection Analysis"), # Clear previous outputs outputs=[paper_details_output, analysis_output], api_name=False, ) # Use built-in select event from Dataframe results_df.select( on_select, inputs=[paper_data_state, query_abstract_state], outputs=[paper_details_output, selected_paper_state], api_name=False, ).then( lambda: (gr.update(visible=True), gr.update(visible=True)), # Show analyze button and feedback accordion outputs=[analyze_btn, paper_feedback_accordion], api_name=False, ) # Connect analyze button to run analysis analyze_btn.click( analyse_abstracts, inputs=[query_abstract_state, selected_paper_state], outputs=[analysis_output], show_progress_on=[paper_details_output, analysis_output], api_name=False, ).then( lambda: gr.update(visible=True), # Show feedback accordion outputs=[analysis_feedback_accordion], api_name=False, ) # Add flagging handlers flag_paper_btn.click( lambda *args: paper_match_logger.flag(list(args)), inputs=[abstract_input, paper_details_output, paper_feedback, paper_expert, paper_comment], preprocess=False, api_name=False, ) flag_analysis_btn.click( lambda *args: analysis_logger.flag(list(args)), inputs=[ abstract_input, paper_details_output, analysis_output, analysis_feedback, analysis_expert, analysis_comment, ], preprocess=False, api_name=False, ) with gr.Tab("About"): about_text = open("README.md", "r").read() # Remove the yaml header if about_text.startswith("---"): about_text = about_text.split("---", 2)[2].strip() gr.Markdown(value=about_text, label="About") return demo if __name__ == "__main__": # Initialize the embedding model embedding_model = init_embedding_model(embedding_model_name, embedding_model_revision) # Initialize the reasoning model reasoning_model = init_reasoning_model(reasoning_model_id) # Load dataset with FAISS index dataset = DatasetManager( embedding_model=embedding_model, ) demo = create_interface() demo.queue(api_open=False).launch(ssr_mode=False, show_api=True)