non2013 commited on
Commit
ba7dd0b
·
1 Parent(s): 6687c9a

Add requirements.txt

Browse files
Files changed (2) hide show
  1. app.py +8 -8
  2. requirements.txt +6 -0
app.py CHANGED
@@ -26,7 +26,7 @@ nlp.vocab.add_flag(lambda s: s.lower() in spacy.lang.en.stop_words.STOP_WORDS, s
26
 
27
  def preprocess_text(text):
28
  """Preprocess the input text using SpaCy and return word indices."""
29
- doc = nlp(text)
30
  word_seq = []
31
  for token in doc:
32
  if token.pos_ != "PUNCT":
@@ -38,17 +38,17 @@ def preprocess_text(text):
38
  def classify_question(text):
39
  # Preprocess the text
40
  seq = preprocess_text(text)
41
- padded_seq = tf.keras.preprocessing.sequence.pad_sequences([seq], maxlen=50) # Adjust maxlen if needed
42
-
43
  # Get predictions from each model
44
- pred1 = 0.15 * np.squeeze(model_1.predict(padded_seq, batch_size=1, verbose=0))
45
- pred2 = 0.35 * np.squeeze(model_2.predict(padded_seq, batch_size=1, verbose=0))
46
- pred3 = 0.15 * np.squeeze(model_3.predict(padded_seq, batch_size=1, verbose=0))
47
- pred4 = 0.35 * np.squeeze(model_4.predict(padded_seq, batch_size=1, verbose=0))
48
 
49
  # Combine predictions
50
  avg_pred = pred1 + pred2 + pred3 + pred4
51
- label = "Insincere" if avg_pred > 0.5 else "Sincere"
52
 
53
  # Create a list of probabilities for each model
54
  probs = {
 
26
 
27
  def preprocess_text(text):
28
  """Preprocess the input text using SpaCy and return word indices."""
29
+ doc = nlp.pipe(text, n_process=1)
30
  word_seq = []
31
  for token in doc:
32
  if token.pos_ != "PUNCT":
 
38
  def classify_question(text):
39
  # Preprocess the text
40
  seq = preprocess_text(text)
41
+ padded_seq = tf.keras.preprocessing.sequence.pad_sequences([seq], maxlen=55) # Adjust maxlen if needed
42
+ BATCH_SIZE = 512
43
  # Get predictions from each model
44
+ pred1 = 0.15 * np.squeeze(model_1.predict(padded_seq, batch_size=BATCH_SIZE, verbose=2))
45
+ pred2 = 0.35 * np.squeeze(model_2.predict(padded_seq, batch_size=BATCH_SIZE, verbose=2))
46
+ pred3 = 0.15 * np.squeeze(model_3.predict(padded_seq, batch_size=BATCH_SIZE, verbose=2))
47
+ pred4 = 0.35 * np.squeeze(model_4.predict(padded_seq, batch_size=BATCH_SIZE, verbose=2))
48
 
49
  # Combine predictions
50
  avg_pred = pred1 + pred2 + pred3 + pred4
51
+ label = "Insincere" if avg_pred > 0.35 else "Sincere"
52
 
53
  # Create a list of probabilities for each model
54
  probs = {
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ tensorflow
2
+ gradio
3
+ spacy
4
+ tqdm
5
+ numpy
6
+ pandas