File size: 9,099 Bytes
4ec8dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';

# LiteLLM - Getting Started

https://github.com/BerriAI/litellm


## **Call 100+ LLMs using the same Input/Output Format**

## Basic usage 
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/liteLLM_Getting_Started.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

```shell
pip install litellm
```
<Tabs>
<TabItem value="openai" label="OpenAI">

```python
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```

</TabItem>
<TabItem value="anthropic" label="Anthropic">

```python
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```

</TabItem>

<TabItem value="vertex" label="VertexAI">

```python
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```

</TabItem>

<TabItem value="hugging" label="HuggingFace">

```python
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud"
)

print(response)
```

</TabItem>

<TabItem value="azure" label="Azure OpenAI">

```python
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}]
)
```

</TabItem>


<TabItem value="ollama" label="Ollama">

```python
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434"
)
```
</TabItem>
<TabItem value="or" label="Openrouter">

```python
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
)
```
</TabItem>

</Tabs>

## Streaming
Set `stream=True` in the `completion` args. 
<Tabs>
<TabItem value="openai" label="OpenAI">

```python
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
```

</TabItem>
<TabItem value="anthropic" label="Anthropic">

```python
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
```

</TabItem>

<TabItem value="vertex" label="VertexAI">

```python
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
```

</TabItem>

<TabItem value="hugging" label="HuggingFace">

```python
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud",
  stream=True,
)

print(response)
```

</TabItem>

<TabItem value="azure" label="Azure OpenAI">

```python
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
```

</TabItem>


<TabItem value="ollama" label="Ollama">

```python
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434",
            stream=True,
)
```
</TabItem>
<TabItem value="or" label="Openrouter">

```python
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
```
</TabItem>

</Tabs>

## Exception handling 

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM. 

```python 
from openai.error import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try: 
    # some code 
    completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
    print(e)
```

## Logging Observability - Log LLM Input/Output ([Docs](https://docs.litellm.ai/docs/observability/callbacks))
LiteLLM exposes pre defined callbacks to send data to Langfuse, LLMonitor, Helicone, Promptlayer, Traceloop, Slack
```python
from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor"] # log input/output to langfuse, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi πŸ‘‹ - i'm openai"}])
```

## Calculate Costs, Usage, Latency

Pass the completion response to `litellm.completion_cost(completion_response=response)` and get the cost

```python
from litellm import completion, completion_cost
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)

cost = completion_cost(completion_response=response)
print("Cost for completion call with gpt-3.5-turbo: ", f"${float(cost):.10f}")
```

**Output**
```shell
Cost for completion call with gpt-3.5-turbo:  $0.0000775000
```

### Track Costs, Usage, Latency for streaming
Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback

```python
import litellm

# track_cost_callback 
def track_cost_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    try:
        # check if it has collected an entire stream response
        if "complete_streaming_response" in kwargs:
            # for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost 
            completion_response=kwargs["complete_streaming_response"]
            input_text = kwargs["messages"]
            output_text = completion_response["choices"][0]["message"]["content"]
            response_cost = litellm.completion_cost(
                model = kwargs["model"],
                messages = input_text,
                completion=output_text
            )
            print("streaming response_cost", response_cost)
    except:
        pass
# set callback 
litellm.success_callback = [track_cost_callback] # set custom callback function

# litellm.completion() call
response = completion(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Hi πŸ‘‹ - i'm openai"
        }
    ],
    stream=True
)
```


Need a dedicated key? Email us @ [email protected]


## More details
* [exception mapping](./exception_mapping.md)
* [retries + model fallbacks for completion()](./completion/reliable_completions.md)
* [tutorial for model fallbacks with completion()](./tutorials/fallbacks.md)