nnnn / litellm /llms /openai.py
nonhuman's picture
Upload 165 files
395201c
raw
history blame
27.7 kB
from typing import Optional, Union, Any
import types, time, json
import httpx
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object, Usage
from typing import Callable, Optional
import aiohttp, requests
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from openai import OpenAI, AsyncOpenAI
class OpenAIError(Exception):
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
self.status_code = status_code
self.message = message
if request:
self.request = request
else:
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
if response:
self.response = response
else:
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class OpenAIConfig():
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
frequency_penalty: Optional[int]=None
function_call: Optional[Union[str, dict]]=None
functions: Optional[list]=None
logit_bias: Optional[dict]=None
max_tokens: Optional[int]=None
n: Optional[int]=None
presence_penalty: Optional[int]=None
stop: Optional[Union[str, list]]=None
temperature: Optional[int]=None
top_p: Optional[int]=None
def __init__(self,
frequency_penalty: Optional[int]=None,
function_call: Optional[Union[str, dict]]=None,
functions: Optional[list]=None,
logit_bias: Optional[dict]=None,
max_tokens: Optional[int]=None,
n: Optional[int]=None,
presence_penalty: Optional[int]=None,
stop: Optional[Union[str, list]]=None,
temperature: Optional[int]=None,
top_p: Optional[int]=None,) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
class OpenAITextCompletionConfig():
"""
Reference: https://platform.openai.com/docs/api-reference/completions/create
The class `OpenAITextCompletionConfig` provides configuration for the OpenAI's text completion API interface. Below are the parameters:
- `best_of` (integer or null): This optional parameter generates server-side completions and returns the one with the highest log probability per token.
- `echo` (boolean or null): This optional parameter will echo back the prompt in addition to the completion.
- `frequency_penalty` (number or null): Defaults to 0. It is a numbers from -2.0 to 2.0, where positive values decrease the model's likelihood to repeat the same line.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `logprobs` (integer or null): This optional parameter includes the log probabilities on the most likely tokens as well as the chosen tokens.
- `max_tokens` (integer or null): This optional parameter sets the maximum number of tokens to generate in the completion.
- `n` (integer or null): This optional parameter sets how many completions to generate for each prompt.
- `presence_penalty` (number or null): Defaults to 0 and can be between -2.0 and 2.0. Positive values increase the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `suffix` (string or null): Defines the suffix that comes after a completion of inserted text.
- `temperature` (number or null): This optional parameter defines the sampling temperature to use.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
best_of: Optional[int]=None
echo: Optional[bool]=None
frequency_penalty: Optional[int]=None
logit_bias: Optional[dict]=None
logprobs: Optional[int]=None
max_tokens: Optional[int]=None
n: Optional[int]=None
presence_penalty: Optional[int]=None
stop: Optional[Union[str, list]]=None
suffix: Optional[str]=None
temperature: Optional[float]=None
top_p: Optional[float]=None
def __init__(self,
best_of: Optional[int]=None,
echo: Optional[bool]=None,
frequency_penalty: Optional[int]=None,
logit_bias: Optional[dict]=None,
logprobs: Optional[int]=None,
max_tokens: Optional[int]=None,
n: Optional[int]=None,
presence_penalty: Optional[int]=None,
stop: Optional[Union[str, list]]=None,
suffix: Optional[str]=None,
temperature: Optional[float]=None,
top_p: Optional[float]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
class OpenAIChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
def completion(self,
model_response: ModelResponse,
timeout: float,
model: Optional[str]=None,
messages: Optional[list]=None,
print_verbose: Optional[Callable]=None,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
acompletion: bool = False,
logging_obj=None,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict]=None,
custom_prompt_dict: dict={},
client=None
):
super().completion()
exception_mapping_worked = False
try:
if headers:
optional_params["extra_headers"] = headers
if model is None or messages is None:
raise OpenAIError(status_code=422, message=f"Missing model or messages")
if not isinstance(timeout, float):
raise OpenAIError(status_code=422, message=f"Timeout needs to be a float")
for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
data = {
"model": model,
"messages": messages,
**optional_params
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
)
try:
max_retries = data.pop("max_retries", 2)
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
else:
return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
else:
if not isinstance(max_retries, int):
raise OpenAIError(status_code=422, message="max retries must be an int")
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
response = openai_client.chat.completions.create(**data) # type: ignore
logging_obj.post_call(
input=None,
api_key=api_key,
original_response=response,
additional_args={"complete_input_dict": data},
)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except Exception as e:
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
new_messages = []
for i in range(len(messages)-1):
new_messages.append(messages[i])
if messages[i]["role"] == messages[i+1]["role"]:
if messages[i]["role"] == "user":
new_messages.append({"role": "assistant", "content": ""})
else:
new_messages.append({"role": "user", "content": ""})
new_messages.append(messages[-1])
messages = new_messages
elif "Last message must have role `user`" in str(e):
new_messages = messages
new_messages.append({"role": "user", "content": ""})
messages = new_messages
else:
raise e
except OpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
raise e
async def acompletion(self,
data: dict,
model_response: ModelResponse,
timeout: float,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client=None,
max_retries=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
response = await openai_aclient.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except Exception as e:
if response and hasattr(response, "text"):
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
else:
if type(e).__name__ == "ReadTimeout":
raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
else:
raise OpenAIError(status_code=500, message=f"{str(e)}")
def streaming(self,
logging_obj,
timeout: float,
data: dict,
model: str,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client = None,
max_retries=None
):
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
response = openai_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
return streamwrapper
async def async_streaming(self,
logging_obj,
timeout: float,
data: dict,
model: str,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client=None,
max_retries=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
response = await openai_aclient.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
except Exception as e: # need to exception handle here. async exceptions don't get caught in sync functions.
if response is not None and hasattr(response, "text"):
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
else:
if type(e).__name__ == "ReadTimeout":
raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
else:
raise OpenAIError(status_code=500, message=f"{str(e)}")
async def aembedding(
self,
data: dict,
model_response: ModelResponse,
timeout: float,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client=None,
max_retries=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data) # type: ignore
return response
except Exception as e:
raise e
def embedding(self,
model: str,
input: list,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
logging_obj=None,
optional_params=None,
client=None,
aembedding=None,
):
super().embedding()
exception_mapping_worked = False
try:
model = model
data = {
"model": model,
"input": input,
**optional_params
}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise OpenAIError(status_code=422, message="max retries must be an int")
if aembedding == True:
response = self.aembedding(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
return response
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
)
## COMPLETION CALL
response = openai_client.embeddings.create(**data) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
except OpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc())
class OpenAITextCompletion(BaseLLM):
_client_session: httpx.Client
def __init__(self) -> None:
super().__init__()
self._client_session = self.create_client_session()
def validate_environment(self, api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
try:
## RESPONSE OBJECT
if response_object is None or model_response_object is None:
raise ValueError("Error in response object format")
choice_list=[]
for idx, choice in enumerate(response_object["choices"]):
message = Message(content=choice["text"], role="assistant")
choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
choice_list.append(choice)
model_response_object.choices = choice_list
if "usage" in response_object:
model_response_object.usage = response_object["usage"]
if "id" in response_object:
model_response_object.id = response_object["id"]
if "model" in response_object:
model_response_object.model = response_object["model"]
model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
return model_response_object
except Exception as e:
raise e
def completion(self,
model_response: ModelResponse,
api_key: str,
model: str,
messages: list,
print_verbose: Optional[Callable]=None,
api_base: Optional[str]=None,
logging_obj=None,
acompletion: bool = False,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict]=None):
super().completion()
exception_mapping_worked = False
try:
if headers is None:
headers = self.validate_environment(api_key=api_key)
if model is None or messages is None:
raise OpenAIError(status_code=422, message=f"Missing model or messages")
api_base = f"{api_base}/completions"
if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list:
prompt = messages[0]["content"]
else:
prompt = " ".join([message["content"] for message in messages]) # type: ignore
data = {
"model": model,
"prompt": prompt,
**optional_params
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "complete_input_dict": data},
)
if acompletion == True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model) # type: ignore
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
response = httpx.post(
url=f"{api_base}",
json=data,
headers=headers,
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
except Exception as e:
raise e
async def acompletion(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
prompt: str,
api_key: str,
model: str):
async with httpx.AsyncClient() as client:
response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout)
response_json = response.json()
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
def streaming(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str
):
with httpx.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST",
timeout=litellm.request_timeout
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
streamwrapper = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
for transformed_chunk in streamwrapper:
yield transformed_chunk
async def async_streaming(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str):
client = httpx.AsyncClient()
async with client.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST",
timeout=litellm.request_timeout
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk