nnnn / litellm /llms /vllm.py
nonhuman's picture
Upload 165 files
395201c
raw
history blame
6.04 kB
import os
import json
from enum import Enum
import requests
import time, httpx
from typing import Callable, Any
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
llm = None
class VLLMError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="http://0.0.0.0:8000")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
# check if vllm is installed
def validate_environment(model: str):
global llm
try:
from vllm import LLM, SamplingParams # type: ignore
if llm is None:
llm = LLM(model=model)
return llm, SamplingParams
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
global llm
try:
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:
prompt = prompt_factory(model=model, messages=messages)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": sampling_params},
)
if llm:
outputs = llm.generate(prompt, sampling_params)
else:
raise VLLMError(status_code=0, message="Need to pass in a model name to initialize vllm")
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
return iter(outputs)
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": sampling_params},
)
print_verbose(f"raw model_response: {outputs}")
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(outputs[0].prompt_token_ids)
completion_tokens = len(outputs[0].outputs[0].token_ids)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
return model_response
def batch_completions(
model: str,
messages: list,
optional_params=None,
custom_prompt_dict={}
):
"""
Example usage:
import litellm
import os
from litellm import batch_completion
responses = batch_completion(
model="vllm/facebook/opt-125m",
messages = [
[
{
"role": "user",
"content": "good morning? "
}
],
[
{
"role": "user",
"content": "what's the time? "
}
]
]
)
"""
try:
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
error_str = str(e)
if "data parallel group is already initialized" in error_str:
pass
else:
raise VLLMError(status_code=0, message=error_str)
sampling_params = SamplingParams(**optional_params)
prompts = []
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
for message in messages:
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=message
)
prompts.append(prompt)
else:
for message in messages:
prompt = prompt_factory(model=model, messages=message)
prompts.append(prompt)
if llm:
outputs = llm.generate(prompts, sampling_params)
else:
raise VLLMError(status_code=0, message="Need to pass in a model name to initialize vllm")
final_outputs = []
for output in outputs:
model_response = ModelResponse()
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = output.outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(output.prompt_token_ids)
completion_tokens = len(output.outputs[0].token_ids)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
final_outputs.append(model_response)
return final_outputs
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass