nnnn / litellm /tests /test_caching.py
nonhuman's picture
Upload 165 files
395201c
raw
history blame
12.8 kB
import sys, os
import time
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
from litellm.caching import Cache
import random
# litellm.set_verbose=True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# comment
messages = [{"role": "user", "content": "who is ishaan 5222"}]
def test_caching_v2(): # test in memory cache
try:
litellm.cache = Cache()
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
if response2['choices'][0]['message']['content'] != response1['choices'][0]['message']['content']:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred: {e}")
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_v2()
def test_caching_with_models_v2():
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
litellm.cache = Cache()
print("test2 for caching")
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response3 = completion(model="command-nightly", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_caching_with_models_v2()
embedding_large_text = """
small text
""" * 5
# # test_caching_with_models()
def test_embedding_caching():
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
end_time = time.time()
print(f"embedding2: {embedding2}")
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
# test_embedding_caching()
def test_embedding_caching_azure():
print("Testing azure embedding caching")
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
api_key = os.environ['AZURE_API_KEY']
api_base = os.environ['AZURE_API_BASE']
api_version = os.environ['AZURE_API_VERSION']
os.environ['AZURE_API_VERSION'] = ""
os.environ['AZURE_API_BASE'] = ""
os.environ['AZURE_API_KEY'] = ""
start_time = time.time()
print("AZURE CONFIGS")
print(api_version)
print(api_key)
print(api_base)
embedding1 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
os.environ['AZURE_API_VERSION'] = api_version
os.environ['AZURE_API_BASE'] = api_base
os.environ['AZURE_API_KEY'] = api_key
# test_embedding_caching_azure()
def test_redis_cache_completion():
litellm.set_verbose = False
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
print("test2 for caching")
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=10, seed=1222)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=10, seed=1222)
response3 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, temperature=1)
response4 = completion(model="command-nightly", messages=messages, caching=True)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
print("\nresponse 4", response4)
litellm.cache = None
"""
1 & 2 should be exactly the same
1 & 3 should be different, since input params are diff
1 & 4 should be diff, since models are diff
"""
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']: # 1 and 2 should be the same
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
if response1['choices'][0]['message']['content'] == response3['choices'][0]['message']['content']:
# if input params like seed, max_tokens are diff it should NOT be a cache hit
print(f"response1: {response1}")
print(f"response3: {response3}")
pytest.fail(f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:")
if response1['choices'][0]['message']['content'] == response4['choices'][0]['message']['content']:
# if models are different, it should not return cached response
print(f"response1: {response1}")
print(f"response4: {response4}")
pytest.fail(f"Error occurred:")
# test_redis_cache_completion()
# redis cache with custom keys
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
return key
def test_custom_redis_cache_with_key():
messages = [{"role": "user", "content": "write a one line story"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
litellm.cache.get_cache_key = custom_get_cache_key
local_cache = {}
def set_cache(key, value):
local_cache[key] = value
def get_cache(key):
if key in local_cache:
return local_cache[key]
litellm.cache.cache.set_cache = set_cache
litellm.cache.cache.get_cache = get_cache
# patch this redis cache get and set call
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False, num_retries=3)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
pytest.fail(f"Error occurred:")
litellm.cache = None
# test_custom_redis_cache_with_key()
def test_custom_redis_cache_params():
# test if we can init redis with **kwargs
try:
litellm.cache = Cache(
type="redis",
host=os.environ['REDIS_HOST'],
port=os.environ['REDIS_PORT'],
password=os.environ['REDIS_PASSWORD'],
db = 0,
ssl=True,
ssl_certfile="./redis_user.crt",
ssl_keyfile="./redis_user_private.key",
ssl_ca_certs="./redis_ca.pem",
)
print(litellm.cache.cache.redis_client)
litellm.cache = None
except Exception as e:
pytest.fail(f"Error occurred:", e)
# test_custom_redis_cache_params()
# def test_redis_cache_with_ttl():
# cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
# sample_model_response_object_str = """{
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }"""
# sample_model_response_object = {
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
# cached_value = cache.get_cache(cache_key="test_key")
# print(f"cached-value: {cached_value}")
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
# time.sleep(2)
# assert cache.get_cache(cache_key="test_key") is None
# # test_redis_cache_with_ttl()
# def test_in_memory_cache_with_ttl():
# cache = Cache(type="local")
# sample_model_response_object_str = """{
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }"""
# sample_model_response_object = {
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
# cached_value = cache.get_cache(cache_key="test_key")
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
# time.sleep(2)
# assert cache.get_cache(cache_key="test_key") is None
# # test_in_memory_cache_with_ttl()