Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb | |
def rand(a=0, b=1): | |
return np.random.rand()*(b-a) + a | |
def get_random_data ( | |
annotation_line, | |
input_shape, | |
max_boxes=25, | |
scale=.3, | |
hue=.1, | |
sat=1.5, | |
val=1.5, | |
random=True | |
): | |
''' | |
random preprocessing for real-time data augmentation | |
''' | |
line = annotation_line.split('\t') | |
h, w = input_shape | |
box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) | |
image = cv2.imread(line[0]) | |
ih, iw, ic = image.shape | |
if not random: | |
resize_scale = min(h/ih, w/iw) | |
nw = int(iw * resize_scale) | |
nh = int(ih * resize_scale) | |
max_offx = w - nw | |
max_offy = h - nh | |
dx = max_offx//2 | |
dy = max_offy//2 | |
to_x0, to_y0 = max(0, dx), max(0, dy) | |
from_x0, from_y0 = max(0, -dx), max(0, -dy) | |
wx, hy = min(w, dx+nw) - to_x0, min(h, dy+nh) - to_y0 | |
# place image | |
image_data = np.zeros((*input_shape,ic), dtype='uint8') + 128 | |
image_data[to_y0:to_y0+hy, to_x0:to_x0+wx, :] = cv2.resize(image, (nw, nh))[from_y0:from_y0+hy, from_x0:from_x0+wx, :] | |
flip = False | |
image_data = image_data/255. | |
else: | |
if np.random.uniform() >= 0.5: | |
# scale Up | |
resize_scale = 1. + scale * np.random.uniform() | |
resize_scale = max( h*resize_scale/ih, w*resize_scale/iw) | |
nw = int(iw * resize_scale) | |
nh = int(ih * resize_scale) | |
max_offx = nw - w | |
max_offy = nh - h | |
dx = int(np.random.uniform() * max_offx) | |
dy = int(np.random.uniform() * max_offy) | |
# resize and crop | |
image = cv2.resize(image, (nw, nh)) | |
image_data = image[dy : (dy + h), dx : (dx + w), :] | |
dx, dy = (-dx, -dy) | |
else: | |
# scale down | |
mul = 1 if np.random.uniform() >= 0.5 else -1 | |
resize_scale = 1. + mul * scale * np.random.uniform() | |
resize_scale = min( h*resize_scale/ih, w*resize_scale/iw) | |
nw = int(iw * resize_scale) | |
nh = int(ih * resize_scale) | |
max_offx = w - nw | |
max_offy = h - nh | |
dx = int(np.random.uniform() * max_offx) | |
dy = int(np.random.uniform() * max_offy) | |
to_x0, to_y0 = max(0, dx), max(0, dy) | |
from_x0, from_y0 = max(0, -dx), max(0, -dy) | |
wx, hy = min(w, dx+nw) - to_x0, min(h, dy+nh) - to_y0 | |
# place image | |
image_data = np.zeros((*input_shape,ic), dtype='uint8') + 128 | |
image_data[to_y0:to_y0+hy, to_x0:to_x0+wx, :] = cv2.resize(image, (nw, nh))[from_y0:from_y0+hy, from_x0:from_x0+wx, :] | |
flip = np.random.uniform() >= 0.5 | |
if flip: image_data = image_data[:,::-1,:] | |
# distort color of the image | |
hue = rand(-hue, hue) | |
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat) | |
val = rand(1, val) if rand()<.5 else 1/rand(1, val) | |
x = rgb_to_hsv(np.array(image_data)/255.) | |
x[..., 0] += hue | |
x[..., 0][x[..., 0]>1] -= 1 | |
x[..., 0][x[..., 0]<0] += 1 | |
x[..., 1] *= sat | |
x[..., 2] *= val | |
x[x>1] = 1 | |
x[x<0] = 0 | |
image_data = hsv_to_rgb(x) # numpy array, 0 to 1 | |
# correct boxes | |
box_data = np.zeros((max_boxes,5)) | |
if len(box)>0: | |
np.random.shuffle(box) | |
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx | |
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy | |
if flip: box[:, [0,2]] = w - box[:, [2,0]] | |
box[:, 0:2][box[:, 0:2]<0] = 0 | |
box[:, 2][box[:, 2]>w] = w | |
box[:, 3][box[:, 3]>h] = h | |
box_w = box[:, 2] - box[:, 0] | |
box_h = box[:, 3] - box[:, 1] | |
box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box | |
if len(box)>max_boxes: box = box[:max_boxes] | |
box_data[:len(box)] = box | |
return image_data, box_data | |
def data_generator(annotation_lines, batch_size, input_shape, random): | |
''' | |
data generator for fit_generator | |
''' | |
n = len(annotation_lines) | |
i = 0 | |
while True: | |
image_data = [] | |
box_data = [] | |
for _ in range(batch_size): | |
image, box = get_random_data(annotation_lines[i], input_shape, max_boxes=50, random=random) | |
image_data.append(image) | |
box = box[np.sum(box, axis=1) != 0, :] | |
box_data.append(box) | |
i = (i+1) % n | |
image_data = np.array(image_data) | |
box_data = np.array(box_data) | |
yield image_data, box_data | |
def data_generator_wrapper(annotation_lines, batch_size, input_shape, random): | |
n = len(annotation_lines) | |
if n==0 or batch_size<=0: return None | |
return data_generator(annotation_lines, batch_size, input_shape, random) |