import cv2 import numpy as np from matplotlib.colors import rgb_to_hsv, hsv_to_rgb def rand(a=0, b=1): return np.random.rand()*(b-a) + a def get_random_data ( annotation_line, input_shape, max_boxes=25, scale=.3, hue=.1, sat=1.5, val=1.5, random=True ): ''' random preprocessing for real-time data augmentation ''' line = annotation_line.split('\t') h, w = input_shape box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) image = cv2.imread(line[0]) ih, iw, ic = image.shape if not random: resize_scale = min(h/ih, w/iw) nw = int(iw * resize_scale) nh = int(ih * resize_scale) max_offx = w - nw max_offy = h - nh dx = max_offx//2 dy = max_offy//2 to_x0, to_y0 = max(0, dx), max(0, dy) from_x0, from_y0 = max(0, -dx), max(0, -dy) wx, hy = min(w, dx+nw) - to_x0, min(h, dy+nh) - to_y0 # place image image_data = np.zeros((*input_shape,ic), dtype='uint8') + 128 image_data[to_y0:to_y0+hy, to_x0:to_x0+wx, :] = cv2.resize(image, (nw, nh))[from_y0:from_y0+hy, from_x0:from_x0+wx, :] flip = False image_data = image_data/255. else: if np.random.uniform() >= 0.5: # scale Up resize_scale = 1. + scale * np.random.uniform() resize_scale = max( h*resize_scale/ih, w*resize_scale/iw) nw = int(iw * resize_scale) nh = int(ih * resize_scale) max_offx = nw - w max_offy = nh - h dx = int(np.random.uniform() * max_offx) dy = int(np.random.uniform() * max_offy) # resize and crop image = cv2.resize(image, (nw, nh)) image_data = image[dy : (dy + h), dx : (dx + w), :] dx, dy = (-dx, -dy) else: # scale down mul = 1 if np.random.uniform() >= 0.5 else -1 resize_scale = 1. + mul * scale * np.random.uniform() resize_scale = min( h*resize_scale/ih, w*resize_scale/iw) nw = int(iw * resize_scale) nh = int(ih * resize_scale) max_offx = w - nw max_offy = h - nh dx = int(np.random.uniform() * max_offx) dy = int(np.random.uniform() * max_offy) to_x0, to_y0 = max(0, dx), max(0, dy) from_x0, from_y0 = max(0, -dx), max(0, -dy) wx, hy = min(w, dx+nw) - to_x0, min(h, dy+nh) - to_y0 # place image image_data = np.zeros((*input_shape,ic), dtype='uint8') + 128 image_data[to_y0:to_y0+hy, to_x0:to_x0+wx, :] = cv2.resize(image, (nw, nh))[from_y0:from_y0+hy, from_x0:from_x0+wx, :] flip = np.random.uniform() >= 0.5 if flip: image_data = image_data[:,::-1,:] # distort color of the image hue = rand(-hue, hue) sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat) val = rand(1, val) if rand()<.5 else 1/rand(1, val) x = rgb_to_hsv(np.array(image_data)/255.) x[..., 0] += hue x[..., 0][x[..., 0]>1] -= 1 x[..., 0][x[..., 0]<0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x>1] = 1 x[x<0] = 0 image_data = hsv_to_rgb(x) # numpy array, 0 to 1 # correct boxes box_data = np.zeros((max_boxes,5)) if len(box)>0: np.random.shuffle(box) box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy if flip: box[:, [0,2]] = w - box[:, [2,0]] box[:, 0:2][box[:, 0:2]<0] = 0 box[:, 2][box[:, 2]>w] = w box[:, 3][box[:, 3]>h] = h box_w = box[:, 2] - box[:, 0] box_h = box[:, 3] - box[:, 1] box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box if len(box)>max_boxes: box = box[:max_boxes] box_data[:len(box)] = box return image_data, box_data def data_generator(annotation_lines, batch_size, input_shape, random): ''' data generator for fit_generator ''' n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for _ in range(batch_size): image, box = get_random_data(annotation_lines[i], input_shape, max_boxes=50, random=random) image_data.append(image) box = box[np.sum(box, axis=1) != 0, :] box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) yield image_data, box_data def data_generator_wrapper(annotation_lines, batch_size, input_shape, random): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, random)