File size: 22,443 Bytes
f76cd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# backend.py

import os
import cv2
import numpy as np
import tensorflow as tf
import smtplib

from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware

from typing import Dict, Any
from datetime import datetime, timezone
from io import BytesIO

# SQLAlchemy imports
from sqlalchemy import create_engine, Column, Integer, String, DateTime, ForeignKey, Text, func
from sqlalchemy.orm import sessionmaker, relationship, declarative_base, Session

# ReportLab (PDF generation)
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as RLImage, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors

# Matplotlib (Chart generation)
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

# YOLO-related imports
from src.yolo3.model import yolo_body
from src.yolo3.detect import detection
from src.utils.image import letterbox_image
from src.utils.fixes import fix_tf_gpu
from tensorflow.keras.layers import Input


##############################################################################
#                           Database Setup (SQLite)
##############################################################################

DB_URL = "sqlite:///./safety_monitor.db"

engine = create_engine(
    DB_URL, connect_args={"check_same_thread": False}  # for single-threaded SQLite
)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

class Upload(Base):
    """
    Stores information about each upload (image or video), plus the user's email.
    """
    __tablename__ = "uploads"

    id = Column(Integer, primary_key=True, index=True)
    filename = Column(String)
    filepath = Column(String)
    timestamp = Column(DateTime)
    approach = Column(Integer)
    user_email = Column(String)  # The user’s email address
    total_workers = Column(Integer, default=0)
    total_helmets = Column(Integer, default=0)
    total_vests = Column(Integer, default=0)
    # We'll store worker_images as a comma-separated string for simplicity
    worker_images = Column(Text, default="")

    # Relationship to SafetyDetection
    detections = relationship("SafetyDetection", back_populates="upload", cascade="all, delete-orphan")


class SafetyDetection(Base):
    """
    Stores individual safety gear detections (e.g., bounding boxes for helmets/vests).
    """
    __tablename__ = "safety_detections"

    id = Column(Integer, primary_key=True, index=True)
    label = Column(String)  # e.g. 'H', 'V'
    box = Column(String)     # bounding box as string, e.g. "x1,y1,x2,y2"
    timestamp = Column(DateTime)

    upload_id = Column(Integer, ForeignKey("uploads.id"))
    upload = relationship("Upload", back_populates="detections")


Base.metadata.create_all(bind=engine)


##############################################################################
#                           FastAPI App & Configuration
##############################################################################

app = FastAPI(
    title="Industrial Safety Monitor (FastAPI + SQLite)",
    description="A YOLO-based safety gear detection app. Three endpoints: upload, results, dashboard.",
    version="1.0.0",
)

# Allow cross-origin requests (optional)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Directories
UPLOAD_FOLDER = "static/uploads"
PROCESSED_FOLDER = "static/processed"
WORKER_FOLDER = "static/workers"
CHARTS_FOLDER = "static/charts"
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif', 'mp4'}

os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(PROCESSED_FOLDER, exist_ok=True)
os.makedirs(WORKER_FOLDER, exist_ok=True)
os.makedirs(CHARTS_FOLDER, exist_ok=True)

##############################################################################
#                           YOLO Model Setup
##############################################################################

input_shape = (416, 416)
class_names = []
anchor_boxes = None
num_classes = 0
num_anchors = 0
model = None

def prepare_model(approach: int):
    """
    Prepares the YOLO model for the selected approach (1, 2, or 3).
    """
    global input_shape, class_names, anchor_boxes
    global num_classes, num_anchors

    if approach not in [1, 2, 3]:
        raise NotImplementedError("Approach must be 1, 2, or 3")

    # Classes: H=Helmet, V=Vest, W=Worker
    class_names[:] = ['H', 'V', 'W']

    # Anchor boxes by approach
    if approach == 1:
        anchor_boxes = np.array(
            [
                np.array([[76, 59], [84, 136], [188, 225]]) / 32,
                np.array([[25, 15], [46, 29], [27, 56]]) / 16,
                np.array([[5, 3], [10, 8], [12, 26]]) / 8
            ],
            dtype='float64'
        )
    elif approach == 2:
        anchor_boxes = np.array(
            [
                np.array([[73, 158], [128, 209], [224, 246]]) / 32,
                np.array([[32, 50], [40, 104], [76, 73]]) / 16,
                np.array([[6, 11], [11, 23], [19, 36]]) / 8
            ],
            dtype='float64'
        )
    else:  # approach == 3
        anchor_boxes = np.array(
            [
                np.array([[76, 59], [84, 136], [188, 225]]) / 32,
                np.array([[25, 15], [46, 29], [27, 56]]) / 16,
                np.array([[5, 3], [10, 8], [12, 26]]) / 8
            ],
            dtype='float64'
        )

    num_classes = len(class_names)
    num_anchors = anchor_boxes.shape[0] * anchor_boxes.shape[1]

    input_tensor = Input(shape=(input_shape[0], input_shape[1], 3))
    num_out_filters = (num_anchors // 3) * (5 + num_classes)
    _model = yolo_body(input_tensor, num_out_filters)

    weight_path = f"model-data/weights/pictor-ppe-v302-a{approach}-yolo-v3-weights.h5"
    if not os.path.exists(weight_path):
        raise FileNotFoundError(f"Weight file not found: {weight_path}")

    _model.load_weights(weight_path)
    return _model

##############################################################################
#                           Utility & Detection Logic
##############################################################################

def allowed_file(filename: str) -> bool:
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def get_db() -> Session:
    """
    Yields a database session.
    """
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()

def run_detection_on_frame(frame: np.ndarray, 
                           approach: int, 
                           upload_id: int, 
                           db: Session) -> np.ndarray:
    """
    Runs YOLO detection on a single frame, updates DB counters/detections,
    and returns the annotated frame.
    """
    global model, anchor_boxes, class_names, input_shape

    ih, iw = frame.shape[:2]
    resized = letterbox_image(frame, input_shape)
    resized_expanded = np.expand_dims(resized, 0)
    image_data = np.array(resized_expanded) / 255.0

    prediction = model.predict(image_data)
    boxes = detection(
        prediction,
        anchor_boxes,
        len(class_names),
        image_shape=(ih, iw),
        input_shape=input_shape,
        max_boxes=50,
        score_threshold=0.3,
        iou_threshold=0.45,
        classes_can_overlap=False
    )[0].numpy()

    # Tally
    workers, helmets, vests = [], [], []
    for box in boxes:
        x1, y1, x2, y2, score, cls_id = box
        x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
        cls_id = int(cls_id)
        label = class_names[cls_id]

        if label == 'W':
            workers.append((x1, y1, x2, y2))
            color = (0, 255, 0)
        elif label == 'H':
            helmets.append((x1, y1, x2, y2))
            color = (255, 0, 0)
        elif label == 'V':
            vests.append((x1, y1, x2, y2))
            color = (0, 0, 255)
        else:
            color = (255, 255, 0)

        cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
        cv2.putText(frame, label, (x1, y1 - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)

    upload_obj = db.query(Upload).filter(Upload.id == upload_id).first()
    if upload_obj:
        upload_obj.total_workers += len(workers)
        upload_obj.total_helmets += len(helmets)
        upload_obj.total_vests += len(vests)
        db.commit()

        # Insert SafetyDetection for helmets/vests
        now_utc = datetime.now(timezone.utc)
        for (hx1, hy1, hx2, hy2) in helmets:
            db.add(SafetyDetection(
                label='H',
                box=f"{hx1},{hy1},{hx2},{hy2}",
                timestamp=now_utc,
                upload_id=upload_id
            ))
        for (vx1, vy1, vx2, vy2) in vests:
            db.add(SafetyDetection(
                label='V',
                box=f"{vx1},{vy1},{vx2},{vy2}",
                timestamp=now_utc,
                upload_id=upload_id
            ))
        db.commit()

        # Also save worker crops
        worker_images_list = []
        for idx, (wx1, wy1, wx2, wy2) in enumerate(workers, start=1):
            crop = frame[wy1:wy2, wx1:wx2]
            if crop.size == 0:
                continue
            worker_filename = f"worker_{upload_id}_{idx}.jpg"
            worker_path = os.path.join(WORKER_FOLDER, worker_filename)
            cv2.imwrite(worker_path, crop)
            worker_images_list.append(worker_path)

        # Append new worker images
        existing_imgs = upload_obj.worker_images.split(",") if upload_obj.worker_images else []
        all_imgs = existing_imgs + worker_images_list
        upload_obj.worker_images = ",".join([w for w in all_imgs if w])
        db.commit()

    return frame

def generate_and_email_pdf(upload_obj: Upload, db: Session):
    """
    Generates a PDF report for a single upload, then emails it to upload_obj.user_email.
    """
    # We’ll produce a single-page-ish PDF with the detection summary for this upload.

    # Grab top-level stats
    total_workers = upload_obj.total_workers
    total_helmets = upload_obj.total_helmets
    total_vests = upload_obj.total_vests
    worker_images = upload_obj.worker_images.split(",") if upload_obj.worker_images else []

    # Create a PDF
    buffer = BytesIO()
    doc = SimpleDocTemplate(buffer, pagesize=A4)
    elements = []
    styles = getSampleStyleSheet()

    # Title
    elements.append(Paragraph("Industrial Safety Monitor Report", styles["Title"]))
    elements.append(Paragraph(f"Upload ID: {upload_obj.id}", styles["Normal"]))
    elements.append(Paragraph(f"Filename: {upload_obj.filename}", styles["Normal"]))
    elements.append(Paragraph(f"Timestamp: {upload_obj.timestamp.strftime('%Y-%m-%d %H:%M:%S')}", styles["Normal"]))
    elements.append(Paragraph(f"Approach: {upload_obj.approach}", styles["Normal"]))
    elements.append(Paragraph(f"User Email: {upload_obj.user_email}", styles["Normal"]))
    elements.append(Spacer(1, 12))

    # Table of basic detection metrics
    data = [
        ["Total Workers", total_workers],
        ["Total Helmets", total_helmets],
        ["Total Vests", total_vests]
    ]
    table = Table(data, colWidths=[200, 200])
    table.setStyle(TableStyle([
        ("BACKGROUND", (0, 0), (-1, 0), colors.grey),
        ("TEXTCOLOR", (0, 0), (-1, 0), colors.whitesmoke),
        ("ALIGN", (0, 0), (-1, -1), "CENTER"),
        ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"),
        ("FONTSIZE", (0, 0), (-1, 0), 12),
        ("BOTTOMPADDING", (0, 0), (-1, 0), 12),
        ("BACKGROUND", (0, 1), (-1, -1), colors.beige),
        ("GRID", (0, 0), (-1, -1), 1, colors.black),
    ]))
    elements.append(table)
    elements.append(Spacer(1, 12))

    # Show worker crops, if any
    if worker_images:
        elements.append(Paragraph("Detected Workers:", styles["Heading3"]))
        elements.append(Spacer(1, 12))
        for wimg in worker_images:
            wimg = wimg.strip()
            if wimg and os.path.exists(wimg):
                elements.append(RLImage(wimg, width=100, height=75))
        elements.append(Spacer(1, 12))

    doc.build(elements)
    buffer.seek(0)
    pdf_data = buffer.getvalue()

    # Email the PDF
    receiver_email = upload_obj.user_email
    if not receiver_email:
        print("No email to send to.")
        return  # skip emailing if no user email

    # Adjust credentials
    sender_email = "[email protected]"
    sender_password = "aobh rdgp iday bpwg"
    subject = "Industrial Safety Monitor - Your Detection Report"
    body = (
        "Hello,\n\n"
        "Please find attached the Industrial Safety Monitor detection report.\n"
        "Regards,\nISM Bot"
    )

    from email.mime.multipart import MIMEMultipart
    from email.mime.text import MIMEText
    from email.mime.application import MIMEApplication

    msg = MIMEMultipart()
    msg["From"] = sender_email
    msg["To"] = receiver_email
    msg["Subject"] = subject
    msg.attach(MIMEText(body, "plain"))

    part = MIMEApplication(pdf_data, _subtype="pdf")
    part.add_header("Content-Disposition", "attachment", filename="ISM_Report.pdf")
    msg.attach(part)

    try:
        with smtplib.SMTP("smtp.gmail.com", 587) as server:
            server.starttls()
            server.login(sender_email, sender_password)
            server.send_message(msg)
        print(f"Email sent successfully to {receiver_email}!")
    except Exception as e:
        print(f"Error sending email: {e}")


##############################################################################
#                               1) /upload
##############################################################################

@app.post("/upload", summary="Upload image/video + email; run detection, send PDF to email.")
async def upload_file(
    approach: int = Form(...),
    file: UploadFile = File(...),
    user_email: str = Form(...),
):
    """
    1) User uploads an image/video with approach + email.
    2) We run YOLO detection.
    3) We store results in DB.
    4) We generate a PDF and email it to `user_email`.
    5) Return detection counts in JSON.
    """
    global model

    db = SessionLocal()

    # Prepare YOLO model for the chosen approach
    try:
        if (model is None) or (approach not in [1, 2, 3]):
            model = prepare_model(approach)
    except Exception as e:
        db.close()
        raise HTTPException(status_code=500, detail=str(e))

    # Check file type
    filename = file.filename
    if not allowed_file(filename):
        db.close()
        raise HTTPException(
            status_code=400,
            detail="Unsupported file type. Allowed: .png, .jpg, .jpeg, .gif, .mp4",
        )

    # Save the uploaded file
    filepath = os.path.join(UPLOAD_FOLDER, filename)
    with open(filepath, "wb") as f:
        f.write(await file.read())

    # Create an Upload record
    upload_obj = Upload(
        filename=filename,
        filepath=filepath,
        timestamp=datetime.now(timezone.utc),
        approach=approach,
        user_email=user_email,
        total_workers=0,
        total_helmets=0,
        total_vests=0,
        worker_images=""
    )
    db.add(upload_obj)
    db.commit()
    db.refresh(upload_obj)
    upload_id = upload_obj.id

    # If it's an image
    if filename.lower().endswith((".png", ".jpg", ".jpeg", ".gif")):
        img = cv2.imread(filepath)
        if img is None:
            db.close()
            raise HTTPException(status_code=400, detail="Failed to read the image file.")

        # Run detection on the single image
        annotated_frame = run_detection_on_frame(img, approach, upload_id, db)

        # Save processed image
        processed_filename = f"processed_{filename}"
        processed_path = os.path.join(PROCESSED_FOLDER, processed_filename)
        cv2.imwrite(processed_path, annotated_frame)

    # If it's a video
    elif filename.lower().endswith(".mp4"):
        video = cv2.VideoCapture(filepath)
        if not video.isOpened():
            db.close()
            raise HTTPException(status_code=400, detail="Failed to read the video file.")

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        processed_filename = f"processed_{filename}"
        processed_path = os.path.join(PROCESSED_FOLDER, processed_filename)

        original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = video.get(cv2.CAP_PROP_FPS)
        frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))

        out = cv2.VideoWriter(
            processed_path, fourcc, fps, (original_width, original_height)
        )

        current_frame = 0
        while True:
            ret, frame = video.read()
            if not ret:
                break
            current_frame += 1
            print(f"Processing frame {current_frame}/{frame_count} (Upload ID={upload_id})")

            annotated_frame = run_detection_on_frame(frame, approach, upload_id, db)
            out.write(annotated_frame)

        video.release()
        out.release()

    # Now fetch updated counts
    db.refresh(upload_obj)

    # Generate & email PDF
    generate_and_email_pdf(upload_obj, db)

    counts = {
        "total_workers": upload_obj.total_workers,
        "total_helmets": upload_obj.total_helmets,
        "total_vests": upload_obj.total_vests
    }

    db.close()
    return {
        "message": f"File uploaded, detection done, PDF emailed to {user_email}.",
        "upload_id": upload_id,
        "counts": counts
    }


##############################################################################
#                               2) /results
##############################################################################

@app.get("/results", summary="Fetch the most recent upload’s details.")
def get_results():
    """
    Returns the details (counts, file paths, worker_images) of the most recent upload.
    """
    db = SessionLocal()
    latest = db.query(Upload).order_by(Upload.timestamp.desc()).first()
    if not latest:
        db.close()
        return {"message": "No uploads found in the database."}

    processed_filename = f"processed_{latest.filename}"
    processed_path = os.path.join(PROCESSED_FOLDER, processed_filename)
    data = {
        "upload_id": latest.id,
        "filename": latest.filename,
        "original_path": latest.filepath,
        "processed_path": processed_path if os.path.exists(processed_path) else None,
        "approach": latest.approach,
        "user_email": latest.user_email,
        "total_workers": latest.total_workers,
        "total_helmets": latest.total_helmets,
        "total_vests": latest.total_vests,
        "worker_images": (latest.worker_images.split(",") if latest.worker_images else []),
        "timestamp": latest.timestamp.strftime("%Y-%m-%d %H:%M:%S")
    }
    db.close()
    return data


##############################################################################
#                               3) /dashboard
##############################################################################

@app.get("/dashboard", summary="Get aggregated statistics for a dashboard.")
def dashboard():
    """
    Returns aggregated stats (uploads, detection sums, time-series, approach usage) in JSON.
    """
    db = SessionLocal()

    # Total uploads
    total_uploads = db.query(Upload).count()

    # Summation of detections
    agg = db.query(
        func.sum(Upload.total_workers).label("tw"),
        func.sum(Upload.total_helmets).label("th"),
        func.sum(Upload.total_vests).label("tv")
    ).one()
    total_workers = agg.tw or 0
    total_helmets = agg.th or 0
    total_vests = agg.tv or 0

    # Time-series by day
    day_rows = db.query(
        func.date(Upload.timestamp).label("day"),
        func.count(Upload.id).label("uploads"),
        func.sum(Upload.total_workers).label("workers"),
        func.sum(Upload.total_helmets).label("helmets"),
        func.sum(Upload.total_vests).label("vests")
    ).group_by(func.date(Upload.timestamp)).order_by(func.date(Upload.timestamp)).all()

    dates = []
    uploads_per_day = []
    workers_per_day = []
    helmets_per_day = []
    vests_per_day = []

    for row in day_rows:
        dates.append(row.day)
        uploads_per_day.append(row.uploads or 0)
        workers_per_day.append(row.workers or 0)
        helmets_per_day.append(row.helmets or 0)
        vests_per_day.append(row.vests or 0)

    # Approach usage
    approach_rows = db.query(
        Upload.approach,
        func.count(Upload.id).label("count")
    ).group_by(Upload.approach).all()
    approach_data = []
    for ar in approach_rows:
        approach_data.append({
            "approach": f"Approach-{ar.approach}",
            "count": ar.count
        })

    # Basic distribution of helmets vs. vests
    safety_gear_labels = ["Helmets", "Vests"]
    safety_gear_counts = [total_helmets, total_vests]

    db.close()
    return {
        "total_uploads": total_uploads,
        "total_workers": total_workers,
        "total_helmets": total_helmets,
        "total_vests": total_vests,
        "time_series": {
            "dates": dates,
            "uploads_per_day": uploads_per_day,
            "workers_per_day": workers_per_day,
            "helmets_per_day": helmets_per_day,
            "vests_per_day": vests_per_day
        },
        "approach_usage": approach_data,
        "safety_gear_distribution": {
            "labels": safety_gear_labels,
            "counts": safety_gear_counts
        }
    }


##############################################################################
#                           Startup (Load YOLO Model)
##############################################################################

@app.on_event("startup")
def on_startup():
    fix_tf_gpu()
    global model
    try:
        # Load default approach=1 at startup (optional)
        model_local = prepare_model(approach=1)
        model = model_local
        print("YOLO model (Approach=1) loaded successfully.")
    except FileNotFoundError as e:
        print(f"Model file not found on startup: {e}")
    except Exception as e:
        print(f"Error preparing model on startup: {e}")