File size: 2,026 Bytes
dd0dc20 a3984fd dd0dc20 95694b6 dd0dc20 fcbebab 04ba023 dd0dc20 b6fdf3a bc6147d 4ae5228 dd0dc20 dc6a3fb 51a0c47 fcbebab aff42d3 51a0c47 43d72a1 611444e 43d72a1 611444e 43d72a1 611444e 43d72a1 611444e 43d72a1 611444e 51a0c47 bc6147d 43d72a1 dd0dc20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import joblib
import pandas as pd
import streamlit as st
model = joblib.load('model (3).joblib')
unique_values = joblib.load('unique_values (3).joblib')
unique_CL = unique_values["Color"]
unique_SC = unique_values["Spectral_Class"]
def main():
st.title("My star type")
st.image("https://img.freepik.com/free-vector/different-types-stars-dark-space_1308-37762.jpg")
st.text("example -> \nK = 27739, L = 849420 , R = 1252, A_M = -7.59 , Color = Blue ,Spectral_Class = B\n -> Type = Hyper Giants")
with st.form("questionaire"):
K = st.number_input('Temperature')
L = st.number_input('Relative Luminosity')
R = st.number_input('Relative Radius')
AM = st.number_input('Absolute Magnitude')
Color = st.selectbox("General Color of Spectrum",options=unique_CL)
Spectral_Class = st.selectbox("Spectral_Class",options=unique_SC)
clicked = st.form_submit_button("Predict type")
if clicked:
result = model.predict(pd.DataFrame({"Temperature(K)": [K],
"Relative Luminosity(Watts)": [L],
"Relative Radius(m)": [R],
"Absolute Magnitude": [AM],
"Color": [Color],
"Spectral_Class": [Spectral_Class]
})
)
if result[0] == 0:
result = "Red Dwarf"
elif result[0] == 1:
result = "Brown Dwarf"
elif result[0] == 2:
result = "White Dwarf"
elif result[0] == 3:
result = "Main Sequence"
elif result[0] == 4:
result = "Super Giants"
else:
result = "Hyper Giants"
st.write(f"star type... {result}")
if __name__=="__main__":
main() |