pipeline / app.py
nornorr's picture
Update app.py
e7e09b0
raw
history blame
1.05 kB
import streamlit as st
from transformers import pipeline
classifier = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
def main():
st.title("image-to-text")
with st.form("image"):
image = st.file_uploader('Choose a file')
# clicked==True only when the button is clicked
clicked = st.form_submit_button("Submit")
if clicked:
results = classifier([image])
st.json(results)
if __name__ == "__main__":
main()
"""'audio-classification', 'automatic-speech-recognition', 'conversational', 'document-question-answering', 'feature-extraction', 'fill-mask', 'image-classification', 'image-segmentation', 'image-to-text', 'ner', 'object-detection', 'question-answering', 'sentiment-analysis', 'summarization', 'table-question-answering', 'text-classification', 'text-generation', 'text2text-generation', 'token-classification', 'translation', 'visual-question-answering', 'vqa', 'zero-shot-classification', 'zero-shot-image-classification', 'translation_XX_to_YY'"""