File size: 4,952 Bytes
d2bc317 79eb986 d2bc317 79eb986 47a4311 d2bc317 79eb986 d2bc317 79eb986 47a4311 79eb986 63f54b3 79eb986 d2bc317 47a4311 79eb986 47a4311 79eb986 d2bc317 47a4311 d2bc317 47a4311 d2bc317 0760685 d2bc317 0760685 d2bc317 0760685 d2bc317 0760685 d2bc317 0760685 d2bc317 0760685 d2bc317 0760685 79eb986 d2bc317 79eb986 d2bc317 79eb986 d2bc317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
from typing import List
from chainlit.types import AskFileResponse
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_qdrant import QdrantVectorStore
#from langchain_openai import ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from chainlit.types import AskFileResponse
from typing import List
import uuid
import chainlit as cl
set_llm_cache(InMemoryCache())
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [
{"role" : "system", "content" : rag_system_prompt_template},
]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([
("system", rag_system_prompt_template),
("human", rag_user_prompt_template)
])
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
# Typical QDrant Client Set-up
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
# Typical Embedding Model
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
def process_text_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as temp_file:
with open(temp_file.name, "wb") as f:
f.write(file.content)
Loader = PyMuPDFLoader
loader = Loader(temp_file.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
@cl.on_chat_start
async def on_chat_start():
await cl.Message(content="Hello! This is a simply but powerful RAG app. It will build context on the fly & use LCEL chain to help with your questions. Special Bonus: this app will cache seen docs so it will expand knowledge base with every use!!").send()
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a PDF File file to begin!",
accept=["application/pdf"],
max_size_mb=2,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
texts = process_text_file(file)
print(f"Processing {len(texts)} text chunks")
# Create a dict vector store
#vector_db = VectorDatabase()
# Adding cache!
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=core_embeddings.model
)
print ('three')
# Typical QDrant Vector Store Set-up
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder)
vectorstore.add_documents(texts)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
#vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} ##
| RunnablePassthrough.assign(context=itemgetter("context"))
| chat_prompt | chat_openai
)
# Create a chain
#retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
# vector_db_retriever=vectorstore,
# llm=chat_openai
#)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
print ('five')
cl.user_session.set("midterm_chain", retrieval_augmented_qa_chain)
@cl.on_message
async def main(message):
midterm_chain = cl.user_session.get("midterm_chain")
#chain = cl.user_session.get("chain")
result = midterm_chain.invoke({"question": message.content})
# Create a new message for the response
#print (result)
response_message = cl.Message(content=result.content)
# Send the response back to the user
await response_message.send() |