File size: 4,952 Bytes
d2bc317
 
 
79eb986
 
d2bc317
 
 
 
 
 
79eb986
 
 
 
 
 
 
 
 
47a4311
d2bc317
79eb986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bc317
 
 
 
 
 
 
 
 
 
 
 
79eb986
47a4311
79eb986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f54b3
 
 
79eb986
 
 
 
 
d2bc317
 
47a4311
79eb986
 
 
 
 
 
47a4311
79eb986
 
 
 
d2bc317
47a4311
d2bc317
47a4311
d2bc317
 
 
0760685
 
 
 
d2bc317
0760685
 
 
 
 
d2bc317
0760685
 
d2bc317
 
 
 
0760685
d2bc317
 
 
0760685
d2bc317
 
 
 
 
 
0760685
d2bc317
 
 
 
 
 
0760685
79eb986
 
 
d2bc317
 
 
 
79eb986
d2bc317
 
 
 
79eb986
d2bc317
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
from typing import List
from chainlit.types import AskFileResponse
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_qdrant import QdrantVectorStore

#from langchain_openai import ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader

from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from chainlit.types import AskFileResponse
from typing import List
import uuid
import chainlit as cl

set_llm_cache(InMemoryCache())


rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""

rag_message_list = [
    {"role" : "system", "content" : rag_system_prompt_template},
]

rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", rag_system_prompt_template),
    ("human", rag_user_prompt_template)
])

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

# Typical QDrant Client Set-up
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
    collection_name=collection_name,
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)

# Typical Embedding Model
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

def process_text_file(file: AskFileResponse):
    import tempfile
    with tempfile.NamedTemporaryFile(mode="w", delete=False) as temp_file:
        with open(temp_file.name, "wb") as f:
            f.write(file.content)

    Loader = PyMuPDFLoader

    loader = Loader(temp_file.name)
    documents = loader.load()
    docs = text_splitter.split_documents(documents)
    for i, doc in enumerate(docs):
        doc.metadata["source"] = f"source_{i}"
    return docs

@cl.on_chat_start
async def on_chat_start():

    await cl.Message(content="Hello! This is a simply but powerful RAG app. It will build context on the fly & use LCEL chain to help with your questions. Special Bonus: this app will cache seen docs so it will expand knowledge base with every use!!").send()
    
    files = None

    # Wait for the user to upload a file
    while files == None:
        files = await cl.AskFileMessage(
            content="Please upload a PDF File file to begin!",
            accept=["application/pdf"],
            max_size_mb=2,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    # load the file
    texts = process_text_file(file)

    print(f"Processing {len(texts)} text chunks")

    # Create a dict vector store
    #vector_db = VectorDatabase()
        # Adding cache!
    store = LocalFileStore("./cache/")
    cached_embedder = CacheBackedEmbeddings.from_bytes_store(
        core_embeddings, store, namespace=core_embeddings.model
    )
    print ('three')
    # Typical QDrant Vector Store Set-up
    vectorstore = QdrantVectorStore(
        client=client,
        collection_name=collection_name,
        embedding=cached_embedder)
    vectorstore.add_documents(texts)
    retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})

    #vector_db = await vector_db.abuild_from_list(texts)
    
    chat_openai = ChatOpenAI()

    retrieval_augmented_qa_chain = (
    {"context": itemgetter("question") | retriever, "question": itemgetter("question")} ## 
    | RunnablePassthrough.assign(context=itemgetter("context"))
    | chat_prompt | chat_openai
    )

    # Create a chain
    #retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
    #    vector_db_retriever=vectorstore,
    #    llm=chat_openai
    #)
    
    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()

    print ('five')

    cl.user_session.set("midterm_chain", retrieval_augmented_qa_chain)


@cl.on_message
async def main(message):
    midterm_chain = cl.user_session.get("midterm_chain")
    #chain = cl.user_session.get("chain")
    result = midterm_chain.invoke({"question": message.content})
        # Create a new message for the response
    #print (result)
    response_message = cl.Message(content=result.content)

    

    # Send the response back to the user
    await response_message.send()