File size: 7,200 Bytes
45d0933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pandas as pd
import plotly.express as px
import os
import umap
from sklearn.preprocessing import StandardScaler

def indicator_chart(chart_type='overall'):
    data_file = os.path.join('data', 'indicator_overview.tsv')
    df = pd.read_csv(data_file, sep='\t')
    
    if chart_type == 'overall':
        df_filtered = df[df['Indicator'] == 'Total with Indicators'].copy()
        total_sentences_per_subfolder = df.groupby('Subfolder')['Total Sentences'].first().to_dict()
        df_filtered['Total Sentences'] = df_filtered['Subfolder'].map(total_sentences_per_subfolder)
        df_filtered['Indicator_Share'] = df_filtered['Count'] / df_filtered['Total Sentences']
        df_filtered['Indicator_Share_Text'] = (df_filtered['Indicator_Share'] * 100).round(2).astype(str) + '%'
        
        fig = px.bar(
            df_filtered, 
            x='Subfolder', 
            y='Indicator_Share', 
            labels={'Indicator_Share': 'Share of Sentences with Indicators', 'Subfolder': ''},
            color='Subfolder', 
            text='Indicator_Share_Text',
            color_discrete_sequence=px.colors.qualitative.D3,
            custom_data=['Total Sentences', 'Count']
        )
        
        fig.update_traces(
            hovertemplate=(
                '<b>%{x}</b><br>' +
                'Share with Indicators: %{y:.1%}<br>' +
                'Total Sentences: %{customdata[0]}<br>' +
                'Sentences with Indicators: %{customdata[1]}<extra></extra>'
            ),
            textposition='inside',
            texttemplate='%{text}',
            textfont=dict(color='rgb(255, 255, 255)'),
            insidetextanchor='middle',
        )

    elif chart_type == 'individual':
        min_value = 5
        exclude_indicators = ['!besprechen']
        df_filtered = df[~df['Indicator'].isin(['Total with Indicators', 'None'] + exclude_indicators)].copy()
        indicators_meeting_threshold = df_filtered[df_filtered['Count'] >= min_value]['Indicator'].unique()
        df_filtered = df_filtered[df_filtered['Indicator'].isin(indicators_meeting_threshold)]
        df_filtered['Indicator'] = df_filtered['Indicator'].str.capitalize()

        fig = px.bar(
            df_filtered,
            x='Subfolder', 
            y='Count', 
            color='Indicator',
            barmode='group',
            labels={'Count': 'Occurrences', 'Subfolder': '', 'Indicator': '  <b>INDICATOR</b>'},
            color_discrete_sequence=px.colors.qualitative.D3
        )

        fig.update_traces(
            texttemplate='%{y}',
            textposition='inside',
            textfont=dict(color='rgb(255, 255, 255)'),
        )

    fig.update_layout(
        xaxis=dict(showline=True),
        yaxis=dict(showticklabels=True, title=''),
        bargap=0.05,
        showlegend=(chart_type == 'individual')
    )
    
    return fig

def causes_chart():
    data_file = os.path.join('data', 'indicator_cause_sentence_metadata.tsv')
    df = pd.read_csv(data_file, sep='\t')

    # Threshold
    min_value = 30
    df_filtered = df[df['cause'] != 'N/A'].copy()
    causes_meeting_threshold = df_filtered.groupby('cause')['cause'].count()[lambda x: x >= min_value].index
    df_filtered = df_filtered[df_filtered['cause'].isin(causes_meeting_threshold)]
    df_filtered['cause'] = df_filtered['cause'].str.capitalize()
    
    fig = px.bar(
        df_filtered.groupby(['subfolder', 'cause']).size().reset_index(name='Count'),
        x='subfolder', 
        y='Count', 
        color='cause',
        barmode='group',
        labels={'Count': 'Occurrences', 'subfolder': '', 'cause': '<b>CAUSE</b>'},
        color_discrete_sequence=px.colors.qualitative.G10,
    )

    fig.update_layout(
        xaxis=dict(showline=True),
        yaxis=dict(showticklabels=True, title=''),

    )

    fig.update_traces(
        texttemplate='%{y}',
        textposition='inside',
        textfont=dict(color='rgb(255, 255, 255)'),
        insidetextanchor='middle',
    )
    
    return fig

def scatter_plot(include_modality=False):
    data_file = os.path.join('data', 'feature_matrix.tsv')
    df = pd.read_csv(data_file, sep='\t')

    # Exclude sentences without any indicators (all indicator columns are 0), causes, or modalities (if included)
    indicator_columns = [col for col in df.columns if col.startswith('indicator_')]
    cause_columns = [col for col in df.columns if col.startswith('cause_')]
    modality_columns = [col for col in df.columns if col.startswith('modality_')]

    df_filtered = df[(df[indicator_columns].sum(axis=1) > 0) | 
                        (df[cause_columns].sum(axis=1) > 0)]

    # Exclude indicator '!besprechen'
    indicator_columns = [col for col in indicator_columns if 'indicator_!besprechen' not in col]

    # Limit indicators to those that occur at least 10 times
    indicator_counts = df_filtered[indicator_columns].sum()
    indicators_to_keep = indicator_counts[indicator_counts >= 10].index.tolist()

    # Further filter to exclude entries without any valid indicators
    df_filtered = df_filtered[df_filtered[indicators_to_keep].sum(axis=1) > 0]

    # Exclude non-feature columns (metadata and sentence text) for dimensionality reduction
    columns_to_drop = ['subfolder']
    if not include_modality:
        columns_to_drop += modality_columns  # Drop modality columns if not included

    features = df_filtered.drop(columns=columns_to_drop)

    # Fill NaN values with 0 for the feature matrix
    features_clean = features.fillna(0)

    # Store the relevant metadata separately to ensure it is aligned correctly with the dimensionality reduction results
    metadata = df_filtered[['subfolder']].copy()
    # Remove the 'indicator_' prefix for indicators and ensure only indicators with at least 10 occurrences are included
    metadata['indicator'] = df_filtered[indicators_to_keep].apply(lambda row: ', '.join([indicator.replace('indicator_', '') for indicator in indicators_to_keep if row[indicator] > 0]), axis=1)
    # Collect all non-zero causes as a string (multiple causes per sentence)
    metadata['cause'] = df_filtered[cause_columns].apply(lambda row: ', '.join([cause.replace('cause_', '') for cause in cause_columns if row[cause] > 0]), axis=1)

    # Perform UMAP dimensionality reduction
    reducer = umap.UMAP(n_components=2, random_state=42, n_neighbors=50, metric='cosine')
    reduced_features = reducer.fit_transform(features_clean)
    df_reduced = pd.DataFrame(reduced_features, columns=['Component 1', 'Component 2'])
    df_reduced = pd.concat([df_reduced, metadata.reset_index(drop=True)], axis=1)

    # Plotting the scatter plot with Plotly Express
    hover_data = {'cause'}
    if include_modality:
        hover_data['Modality'] = True

    fig = px.scatter(
        df_reduced,
        x='Component 1',
        y='Component 2',
        color='subfolder',
        hover_data=hover_data,
        labels={'Component 1': 'UMAP Dim 1', 'Component 2': 'UMAP Dim 2'},
        color_discrete_sequence=px.colors.qualitative.Plotly
    )

    fig.update_layout(
        xaxis=dict(showgrid=False),
        yaxis=dict(showgrid=False),
        showlegend=True
    )

    return fig