File size: 7,200 Bytes
45d0933 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import pandas as pd
import plotly.express as px
import os
import umap
from sklearn.preprocessing import StandardScaler
def indicator_chart(chart_type='overall'):
data_file = os.path.join('data', 'indicator_overview.tsv')
df = pd.read_csv(data_file, sep='\t')
if chart_type == 'overall':
df_filtered = df[df['Indicator'] == 'Total with Indicators'].copy()
total_sentences_per_subfolder = df.groupby('Subfolder')['Total Sentences'].first().to_dict()
df_filtered['Total Sentences'] = df_filtered['Subfolder'].map(total_sentences_per_subfolder)
df_filtered['Indicator_Share'] = df_filtered['Count'] / df_filtered['Total Sentences']
df_filtered['Indicator_Share_Text'] = (df_filtered['Indicator_Share'] * 100).round(2).astype(str) + '%'
fig = px.bar(
df_filtered,
x='Subfolder',
y='Indicator_Share',
labels={'Indicator_Share': 'Share of Sentences with Indicators', 'Subfolder': ''},
color='Subfolder',
text='Indicator_Share_Text',
color_discrete_sequence=px.colors.qualitative.D3,
custom_data=['Total Sentences', 'Count']
)
fig.update_traces(
hovertemplate=(
'<b>%{x}</b><br>' +
'Share with Indicators: %{y:.1%}<br>' +
'Total Sentences: %{customdata[0]}<br>' +
'Sentences with Indicators: %{customdata[1]}<extra></extra>'
),
textposition='inside',
texttemplate='%{text}',
textfont=dict(color='rgb(255, 255, 255)'),
insidetextanchor='middle',
)
elif chart_type == 'individual':
min_value = 5
exclude_indicators = ['!besprechen']
df_filtered = df[~df['Indicator'].isin(['Total with Indicators', 'None'] + exclude_indicators)].copy()
indicators_meeting_threshold = df_filtered[df_filtered['Count'] >= min_value]['Indicator'].unique()
df_filtered = df_filtered[df_filtered['Indicator'].isin(indicators_meeting_threshold)]
df_filtered['Indicator'] = df_filtered['Indicator'].str.capitalize()
fig = px.bar(
df_filtered,
x='Subfolder',
y='Count',
color='Indicator',
barmode='group',
labels={'Count': 'Occurrences', 'Subfolder': '', 'Indicator': ' <b>INDICATOR</b>'},
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
textfont=dict(color='rgb(255, 255, 255)'),
)
fig.update_layout(
xaxis=dict(showline=True),
yaxis=dict(showticklabels=True, title=''),
bargap=0.05,
showlegend=(chart_type == 'individual')
)
return fig
def causes_chart():
data_file = os.path.join('data', 'indicator_cause_sentence_metadata.tsv')
df = pd.read_csv(data_file, sep='\t')
# Threshold
min_value = 30
df_filtered = df[df['cause'] != 'N/A'].copy()
causes_meeting_threshold = df_filtered.groupby('cause')['cause'].count()[lambda x: x >= min_value].index
df_filtered = df_filtered[df_filtered['cause'].isin(causes_meeting_threshold)]
df_filtered['cause'] = df_filtered['cause'].str.capitalize()
fig = px.bar(
df_filtered.groupby(['subfolder', 'cause']).size().reset_index(name='Count'),
x='subfolder',
y='Count',
color='cause',
barmode='group',
labels={'Count': 'Occurrences', 'subfolder': '', 'cause': '<b>CAUSE</b>'},
color_discrete_sequence=px.colors.qualitative.G10,
)
fig.update_layout(
xaxis=dict(showline=True),
yaxis=dict(showticklabels=True, title=''),
)
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
textfont=dict(color='rgb(255, 255, 255)'),
insidetextanchor='middle',
)
return fig
def scatter_plot(include_modality=False):
data_file = os.path.join('data', 'feature_matrix.tsv')
df = pd.read_csv(data_file, sep='\t')
# Exclude sentences without any indicators (all indicator columns are 0), causes, or modalities (if included)
indicator_columns = [col for col in df.columns if col.startswith('indicator_')]
cause_columns = [col for col in df.columns if col.startswith('cause_')]
modality_columns = [col for col in df.columns if col.startswith('modality_')]
df_filtered = df[(df[indicator_columns].sum(axis=1) > 0) |
(df[cause_columns].sum(axis=1) > 0)]
# Exclude indicator '!besprechen'
indicator_columns = [col for col in indicator_columns if 'indicator_!besprechen' not in col]
# Limit indicators to those that occur at least 10 times
indicator_counts = df_filtered[indicator_columns].sum()
indicators_to_keep = indicator_counts[indicator_counts >= 10].index.tolist()
# Further filter to exclude entries without any valid indicators
df_filtered = df_filtered[df_filtered[indicators_to_keep].sum(axis=1) > 0]
# Exclude non-feature columns (metadata and sentence text) for dimensionality reduction
columns_to_drop = ['subfolder']
if not include_modality:
columns_to_drop += modality_columns # Drop modality columns if not included
features = df_filtered.drop(columns=columns_to_drop)
# Fill NaN values with 0 for the feature matrix
features_clean = features.fillna(0)
# Store the relevant metadata separately to ensure it is aligned correctly with the dimensionality reduction results
metadata = df_filtered[['subfolder']].copy()
# Remove the 'indicator_' prefix for indicators and ensure only indicators with at least 10 occurrences are included
metadata['indicator'] = df_filtered[indicators_to_keep].apply(lambda row: ', '.join([indicator.replace('indicator_', '') for indicator in indicators_to_keep if row[indicator] > 0]), axis=1)
# Collect all non-zero causes as a string (multiple causes per sentence)
metadata['cause'] = df_filtered[cause_columns].apply(lambda row: ', '.join([cause.replace('cause_', '') for cause in cause_columns if row[cause] > 0]), axis=1)
# Perform UMAP dimensionality reduction
reducer = umap.UMAP(n_components=2, random_state=42, n_neighbors=50, metric='cosine')
reduced_features = reducer.fit_transform(features_clean)
df_reduced = pd.DataFrame(reduced_features, columns=['Component 1', 'Component 2'])
df_reduced = pd.concat([df_reduced, metadata.reset_index(drop=True)], axis=1)
# Plotting the scatter plot with Plotly Express
hover_data = {'cause'}
if include_modality:
hover_data['Modality'] = True
fig = px.scatter(
df_reduced,
x='Component 1',
y='Component 2',
color='subfolder',
hover_data=hover_data,
labels={'Component 1': 'UMAP Dim 1', 'Component 2': 'UMAP Dim 2'},
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(
xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
showlegend=True
)
return fig
|