|
import streamlit as st |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from annotated_text import annotated_text |
|
|
|
|
|
model_directory = "norygano/causalBERT" |
|
tokenizer = AutoTokenizer.from_pretrained(model_directory, add_prefix_space=True) |
|
model = AutoModelForTokenClassification.from_pretrained(model_directory) |
|
|
|
|
|
model.eval() |
|
|
|
|
|
label_map = {0: "O", 1: "B-INDICATOR", 2: "I-INDICATOR", 3: "B-CAUSE", 4: "I-CAUSE"} |
|
|
|
|
|
st.title("Attribution of Causality") |
|
st.write("Tags indicators and causes. GER only (atm)") |
|
|
|
|
|
sentences_input = st.text_area("Sentences (one per line)", "\n".join([ |
|
"Laub könnte verantwortlich für den Klimawandel sein.", |
|
|
|
"Fußball führt zu Waldschäden.", |
|
|
|
"Haustüren tragen zum Betonsterben bei.", |
|
|
|
|
|
])) |
|
|
|
|
|
sentences = [sentence.strip() for sentence in sentences_input.splitlines() if sentence.strip()] |
|
|
|
|
|
if st.button("Analyze Sentences"): |
|
for sentence in sentences: |
|
|
|
inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
logits = outputs.logits |
|
predicted_label_ids = torch.argmax(logits, dim=2) |
|
|
|
|
|
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) |
|
|
|
|
|
predicted_labels = [label_map[label_id.item()] for label_id in predicted_label_ids[0]] |
|
|
|
|
|
annotations = [] |
|
for token, label in zip(tokens, predicted_labels): |
|
if token in ['[CLS]', '[SEP]']: |
|
continue |
|
if token.startswith("##"): |
|
annotations[-1] = (annotations[-1][0] + token[2:], annotations[-1][1]) |
|
else: |
|
|
|
if label != "O": |
|
annotations.append((token, label)) |
|
else: |
|
annotations.append(token) |
|
|
|
|
|
st.write(f"**Sentence:** {sentence}") |
|
annotated_text(*annotations) |
|
st.write("---") |
|
|