import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from annotated_text import annotated_text import pandas as pd import plotly.express as px from plot import indicator_chart, causes_chart, scatter, sankey import os # Define initial threshold values at the top of the script default_cause_threshold = 20 default_indicator_threshold = 15 # Load the trained model and tokenizer model_directory = "norygano/causalBERT" tokenizer = AutoTokenizer.from_pretrained(model_directory, add_prefix_space=True) model = AutoModelForTokenClassification.from_pretrained(model_directory) model.eval() # Define the label map label_map = {0: "O", 1: "B-INDICATOR", 2: "I-INDICATOR", 3: "B-CAUSE", 4: "I-CAUSE", 5: "B-EFFECT", 6: "I-EFFECT"} # Main application st.markdown( """
CAUSEN V
""", unsafe_allow_html=True ) st.markdown("[Model](https://huggingface.co/norygano/causalBERT) | [Data](https://huggingface.co/datasets/norygano/causenv) | [Project](https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-ii/faecher/germanistik/professurenfachteile/germanistische-linguistik/professoren/prof-dr-martin-wengeler/kontroverse-diskurse/individium-gesellschaft)") st.write("Tags indicators and causes in explicit attributions of causality.") # Create tabs tab1, tab2, tab3, tab4, tab5 = st.tabs(["Prompt", "Indicators", "Causes", "Scatter", "Sankey"]) # Prompt Tab with tab1: sentences_input = st.text_area("*Sentences (one per line)*", "\n".join([ "Autos stehen im Verdacht, Waldsterben zu verursachen.", "Fußball führt zu Waldschäden.", "Haustüren tragen zum Betonsterben bei.", ]), placeholder="German only (currently)") sentences = [sentence.strip() for sentence in sentences_input.splitlines() if sentence.strip()] if st.button("Analyze"): for sentence in sentences: inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_label_ids = torch.argmax(logits, dim=2) tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) predicted_labels = [label_map[label_id.item()] for label_id in predicted_label_ids[0]] annotations = [] current_word = "" current_label = "O" for token, label in zip(tokens, predicted_labels): if token in ['[CLS]', '[SEP]']: # Exclude special tokens continue if token.startswith("##"): current_word += token[2:] else: if current_word: if current_label != "O": annotations.append((current_word, current_label)) else: annotations.append(current_word) annotations.append(" ") # Add a space between words current_word = token current_label = label if current_word: if current_label != "O": annotations.append((current_word, current_label)) else: annotations.append(current_word) st.write(f"**Sentence:** {sentence}") annotated_text(*annotations) st.write("---") # Research Insights Tab with tab2: # Overall st.subheader("Overall") fig_overall = indicator_chart(chart_type='overall') st.plotly_chart(fig_overall, use_container_width=True) # Individual Indicators Chart st.subheader("Individual") fig_individual = indicator_chart(chart_type='individual') st.plotly_chart(fig_individual, use_container_width=True) with tab3: fig_causes = causes_chart() st.plotly_chart(fig_causes, use_container_width=True) with tab4: fig_scatter = scatter() st.plotly_chart(fig_scatter, use_container_width=True) with tab5: # Fixed height for the Sankey chart container with st.container(): # Retrieve slider values and generate the diagram cause_threshold = st.session_state.get("cause_threshold", default_cause_threshold) indicator_threshold = st.session_state.get("indicator_threshold", default_indicator_threshold) fig_sankey = sankey(cause_threshold=cause_threshold, indicator_threshold=indicator_threshold) st.plotly_chart(fig_sankey, use_container_width=True) # Place sliders below the chart container with st.container(): cause_threshold = st.slider("Cause >", min_value=1, max_value=100, value=default_cause_threshold, key="cause_threshold") indicator_threshold = st.slider("Indicator >", min_value=1, max_value=100, value=default_indicator_threshold, key="indicator_threshold")