import gradio as gr from transformers import pipeline pipeline = pipeline("text-generation", model="not-lain/PyGPT") def format_input(instruction,inp): prefix = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" txt = prefix + f"### Instruction:\n{instruction}"+ f"\n\n### Input:{inp}"+"\n\n### Output:\n" return txt def process_markdown(out): mark = f"""```py {out} ```""" return mark def generate_text(length,instruction,inp): if instruction == None : instruction = "" if inp == None : inp = "" txt = format_input(instruction,inp) out = pipeline(txt, max_length=len(txt)+length)[0]["generated_text"] out = out.split("Output:\n")[1] mark = process_markdown(out) return mark MARKDOWN_TEXT = """ # PyGPT Text Generation Demo this is a demo using the [PyGPT model](https://huggingface.co/not-lain/PyGPT) to generate text based on an input instruction and input text. the model is based on the [GPT-2 model](https://huggingface.co/gpt2) and finetuned on the [python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca) dataset. """ with gr.Blocks() as iface: gr.Markdown(MARKDOWN_TEXT) length = gr.Slider(1, 100, 50, label="Max Length") instruction = gr.Text(label= "instruction") inp = gr.Text(label="input") out = gr.Markdown(label="output") submit = gr.Button("submit") submit.click(generate_text,inputs=[length,instruction,inp],outputs=out) gr.Examples([ [50,"Create a function to calculate the sum of a sequence of integers.","[1, 2, 3, 4, 5]"], [50,"Generate a Python code for crawling a website for a specific type of data.","website: www.example.com data to crawl: phone numbers"]], inputs = [length,instruction,inp], outputs= [out], fn=generate_text, cache_examples=True) iface.launch(debug=True)