File size: 3,931 Bytes
331412c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039cd66
331412c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7dc56
 
 
 
 
331412c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039cd66
9c7dc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039cd66
9c7dc56
039cd66
9c7dc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331412c
 
 
 
9c7dc56
331412c
9c7dc56
 
 
 
 
 
 
 
 
 
 
039cd66
9c7dc56
 
 
 
 
039cd66
331412c
 
 
 
 
 
bbd4f95
331412c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import torch


EXAMPLE_MD = """
```python
import torch 

t1 = torch.arange({n1}).view({dim1})

t2 = torch.arange({n2}).view({dim2})

(t1 @ t2).shape = {out_shape} 

```

"""


def generate_example(dim1: list, dim2: list):
    n1 = 1
    n2 = 1
    for i in dim1:
        n1 *= i
    for i in dim2:
        n2 *= i

    t1 = torch.arange(n1).view(dim1)
    t2 = torch.arange(n2).view(dim2)
    try:
        out_shape = list((t1 @ t2).shape)
    except RuntimeError:
        out_shape = "error"

    code = EXAMPLE_MD.format(
        n1=str(n1), dim1=str(dim1), n2=str(n2), dim2=str(dim2), out_shape=str(out_shape)
    )

    return dim1, dim2, code


def sanitize_dimention(dim):
    if dim is None:
        gr.Error("one of the dimentions is empty, please fill it")
    if "[" in dim:
        dim = dim.replace("[", "")
    if "]" in dim:
        dim = dim.replace("]", "")
    if "," in dim:
        dim = dim.replace(",", " ").strip()
        out = [int(i.strip()) for i in dim.split()]
    else:
        out = [int(dim.strip())]
    if 0 in out:
        gr.Error(
            "Found the number 0 in one of the dimensions which is not allowed, consider using 1 instead"
        )
    return out


def create_row(dim):
    out = "| "
    for i in dim:
        out = out + str(i) + " | "
    return out + "\n"


def create_header(n_dim, checks=None):
    checks = ["<!-- -->"] * n_dim if checks is None else checks
    out = "| "
    for i in checks:
        out = out + i + " | "
    out += "\n" + "|---" * n_dim + "|\n"
    return out


def generate_table(dim1, dim2, checks=None):
    n_dim = len(dim1)
    table = create_header(n_dim, checks)
    # tensor 1
    table += create_row(dim1)
    # tensor 2
    table += create_row(dim2)
    return table


def alignment_and_fill_with_ones(dim1, dim2):
    n_dim = max(len(dim1), len(dim2))

    if len(dim1) == len(dim2):
        pass
    elif len(dim1) < len(dim2):
        placeholder = [1] * (n_dim - len(dim1))
        placeholder.extend(dim1)
        dim1 = placeholder
    else:
        placeholder = [1] * (n_dim - len(dim2))
        placeholder.extend(dim2)
        dim2 = placeholder
    return dim1, dim2

def check_validity(dim1,dim2):
    if len(dim1) < 2:
        return ["WIP"] * len(dim1)
    out = []
    for i in range(len(dim1)-2):
        if dim1[i] == dim2[i]:
            out.append("V")
        else : 
            out.append("X")
    # final dims
    if dim1[-1] == dim2[-2]:
        out.extend(["V","V"])
    else : 
        out.extend(["X","X"])
    return out


def substitute_ones_with_concat(dim1,dim2):
    for i in range(len(dim1)-2):
        dim1[i] = dim2[i] if dim1[i] == 1 else dim1[i]
        dim2[i] = dim1[i] if dim2[i] == 1 else dim2[i]
    return dim1, dim2

def predict(dim1, dim2):
    dim1 = sanitize_dimention(dim1)
    dim2 = sanitize_dimention(dim2)
    dim1, dim2, code = generate_example(dim1, dim2)
    # TODO 
    # fix for dims if one or both have dimensions is 1
    # Table 1 
    dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2)
    table1 = generate_table(dim1, dim2)
    # Table 2 
    dim1, dim2 = substitute_ones_with_concat(dim1,dim2)
    table2 = generate_table(dim1, dim2)
    # Table 3 
    checks = check_validity(dim1,dim2)
    table3 = generate_table(dim1,dim2,checks)

    out = code
    out += "\n# Step1 (alignment and pre_append with ones)\n" + table1
    out += "\n# Step2 (susbtitute columns that have 1 with concat)\nexcept for last 2 dimensions\n" + table2
    out += "\n# Step3 (check if matrix multiplication is valid)\n" 
    out += "* last dimension of dim1 should equal before last dimension of dim2\n"
    out += "* all the other dimensions should be equal to one another\n\n" + table3
    return out


demo = gr.Interface(
    predict,
    inputs=["text", "text"],
    outputs=["markdown"],
    examples=[["9,2,1,3,3", "5,3,7"], ["1,2,3", "5,2,7"]],
)

demo.launch(debug=True)