File size: 4,936 Bytes
003d203 94d1b20 0e6c023 cce19ac aa16383 dcfda89 94d1b20 cce19ac dc95e97 94d1b20 3aa0053 cce19ac aa16383 dcfda89 aa16383 dcfda89 94d1b20 dcfda89 aa16383 dcfda89 5fb3d3c aa16383 ba5420f aa16383 dcfda89 30b17a2 aa16383 dcfda89 aa16383 94d1b20 aa16383 94d1b20 9a3b780 aa16383 ba5420f 94d1b20 ba5420f 94d1b20 ba5420f ccd0549 94d1b20 cce19ac 0e6c023 94d1b20 cce19ac a181ad3 2ca2e3d 94d1b20 aa16383 2ca2e3d c74d7e5 cce19ac 94d1b20 c74d7e5 94d1b20 2ca2e3d 94d1b20 9702cba 94d1b20 aa16383 dcfda89 cce19ac 94d1b20 dcfda89 94d1b20 dcfda89 94d1b20 6039455 aa16383 0e6c023 94d1b20 ba5420f cce19ac 94d1b20 ba5420f 94d1b20 ba5420f 94d1b20 6039455 94d1b20 ba5420f 0e6c023 cce19ac 94d1b20 0e6c023 cce19ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")
def prepare_image_and_mask(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
):
image = load_img(image).convert("RGB")
# expand image (left,top,right,bottom)
background = ImageOps.expand(
image,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
mask = Image.new("RGB", image.size, "black")
mask = ImageOps.expand(
mask,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
return background, mask
def outpaint(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background, mask = prepare_image_and_mask(
image, padding_top, padding_bottom, padding_left, padding_right
)
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def inpaint(
image,
mask,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background = image.convert("RGB")
mask = mask.convert("L")
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def rmbg(image=None, url=None):
if image is None:
image = url
image = load_img(image).convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
@spaces.GPU
def main(*args):
api_num = args[0]
args = args[1:]
if api_num == 1:
return rmbg(*args)
elif api_num == 2:
return outpaint(*args)
elif api_num == 3:
return inpaint(*args)
rmbg_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(1, visible=False),
"image",
gr.Text("", label="url"),
],
outputs=["image"],
api_name="rmbg",
examples=[[1, "./assets/Inpainting mask.png", ""]],
cache_examples=False,
description="pass an image or a url of an image",
)
outpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(2, visible=False),
gr.Image(label="image", type="pil"),
gr.Number(label="padding top"),
gr.Number(label="padding bottom"),
gr.Number(label="padding left"),
gr.Number(label="padding right"),
gr.Text(label="prompt"),
gr.Number(value=50, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="outpainting",
examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
cache_examples=False,
)
inpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(3, visible=False),
gr.Image(label="image", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Text(label="prompt"),
gr.Number(value=50, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="inpaint",
examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
cache_examples=False,
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
)
demo = gr.TabbedInterface(
[rmbg_tab, outpaint_tab, inpaint_tab],
["remove background", "outpainting", "inpainting"],
title="Utilities that require GPU",
)
demo.launch() |