File size: 4,936 Bytes
003d203
 
 
94d1b20
0e6c023
cce19ac
aa16383
dcfda89
94d1b20
cce19ac
dc95e97
94d1b20
 
 
 
3aa0053
 
 
 
 
 
 
 
 
cce19ac
 
 
 
aa16383
 
 
dcfda89
 
 
 
aa16383
dcfda89
94d1b20
dcfda89
 
 
 
aa16383
dcfda89
5fb3d3c
 
 
 
 
aa16383
 
 
ba5420f
aa16383
dcfda89
 
 
 
 
30b17a2
 
aa16383
 
dcfda89
aa16383
94d1b20
 
 
 
 
 
 
 
 
 
 
aa16383
94d1b20
9a3b780
aa16383
 
ba5420f
 
 
 
 
 
 
 
 
94d1b20
 
 
 
 
 
 
 
 
 
 
ba5420f
94d1b20
ba5420f
 
 
ccd0549
94d1b20
 
 
 
 
cce19ac
 
 
0e6c023
 
 
94d1b20
 
 
 
cce19ac
a181ad3
2ca2e3d
 
94d1b20
 
 
 
 
 
aa16383
 
 
2ca2e3d
c74d7e5
cce19ac
94d1b20
 
c74d7e5
94d1b20
2ca2e3d
94d1b20
9702cba
94d1b20
aa16383
 
 
dcfda89
 
cce19ac
94d1b20
 
 
 
 
 
 
 
dcfda89
94d1b20
dcfda89
94d1b20
6039455
aa16383
0e6c023
94d1b20
ba5420f
 
 
cce19ac
94d1b20
 
 
 
 
ba5420f
94d1b20
ba5420f
94d1b20
6039455
94d1b20
ba5420f
 
0e6c023
cce19ac
 
94d1b20
0e6c023
 
cce19ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")


def prepare_image_and_mask(
    image,
    padding_top=0,
    padding_bottom=0,
    padding_left=0,
    padding_right=0,
):
    image = load_img(image).convert("RGB")
    # expand image (left,top,right,bottom)
    background = ImageOps.expand(
        image,
        border=(padding_left, padding_top, padding_right, padding_bottom),
        fill="white",
    )
    mask = Image.new("RGB", image.size, "black")
    mask = ImageOps.expand(
        mask,
        border=(padding_left, padding_top, padding_right, padding_bottom),
        fill="white",
    )
    return background, mask


def outpaint(
    image,
    padding_top=0,
    padding_bottom=0,
    padding_left=0,
    padding_right=0,
    prompt="",
    num_inference_steps=28,
    guidance_scale=50,
):
    background, mask = prepare_image_and_mask(
        image, padding_top, padding_bottom, padding_left, padding_right
    )

    result = pipe(
        prompt=prompt,
        height=background.height,
        width=background.width,
        image=background,
        mask_image=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    result = result.convert("RGBA")

    return result


def inpaint(
    image,
    mask,
    prompt="",
    num_inference_steps=28,
    guidance_scale=50,
):
    background = image.convert("RGB")
    mask = mask.convert("L")

    result = pipe(
        prompt=prompt,
        height=background.height,
        width=background.width,
        image=background,
        mask_image=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    result = result.convert("RGBA")

    return result


def rmbg(image=None, url=None):
    if image is None:
        image = url
    image = load_img(image).convert("RGB")
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image


@spaces.GPU
def main(*args):
    api_num = args[0]
    args = args[1:]
    if api_num == 1:
        return rmbg(*args)
    elif api_num == 2:
        return outpaint(*args)
    elif api_num == 3:
        return inpaint(*args)


rmbg_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(1, visible=False),
        "image",
        gr.Text("", label="url"),
    ],
    outputs=["image"],
    api_name="rmbg",
    examples=[[1, "./assets/Inpainting mask.png", ""]],
    cache_examples=False,
    description="pass an image or a url of an image",
)

outpaint_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(2, visible=False),
        gr.Image(label="image", type="pil"),
        gr.Number(label="padding top"),
        gr.Number(label="padding bottom"),
        gr.Number(label="padding left"),
        gr.Number(label="padding right"),
        gr.Text(label="prompt"),
        gr.Number(value=50, label="num_inference_steps"),
        gr.Number(value=28, label="guidance_scale"),
    ],
    outputs=["image"],
    api_name="outpainting",
    examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
    cache_examples=False,
)


inpaint_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(3, visible=False),
        gr.Image(label="image", type="pil"),
        gr.Image(label="mask", type="pil"),
        gr.Text(label="prompt"),
        gr.Number(value=50, label="num_inference_steps"),
        gr.Number(value=28, label="guidance_scale"),
    ],
    outputs=["image"],
    api_name="inpaint",
    examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
    cache_examples=False,
    description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
)

demo = gr.TabbedInterface(
    [rmbg_tab, outpaint_tab, inpaint_tab],
    ["remove background", "outpainting", "inpainting"],
    title="Utilities that require GPU",
)


demo.launch()