add translation tab
Browse files- app.py +86 -10
- requirements.txt +3 -2
app.py
CHANGED
@@ -3,7 +3,12 @@ import spaces
|
|
3 |
import torch
|
4 |
from loadimg import load_img
|
5 |
from torchvision import transforms
|
6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
7 |
from diffusers import FluxFillPipeline
|
8 |
from PIL import Image, ImageOps
|
9 |
|
@@ -11,9 +16,11 @@ from PIL import Image, ImageOps
|
|
11 |
import numpy as np
|
12 |
from simple_lama_inpainting import SimpleLama
|
13 |
from contextlib import contextmanager
|
|
|
14 |
# import whisperx
|
15 |
import gc
|
16 |
|
|
|
17 |
@contextmanager
|
18 |
def float32_high_matmul_precision():
|
19 |
torch.set_float32_matmul_precision("high")
|
@@ -187,7 +194,7 @@ def erase(image=None, mask=None):
|
|
187 |
# model = whisperx.load_model("large-v2", device, compute_type=compute_type)
|
188 |
# audio_input = whisperx.load_audio(audio)
|
189 |
# result = model.transcribe(audio_input, batch_size=batch_size)
|
190 |
-
|
191 |
# # Clear GPU memory
|
192 |
# del model
|
193 |
# gc.collect()
|
@@ -205,7 +212,7 @@ def erase(image=None, mask=None):
|
|
205 |
# # 3. Assign speaker labels
|
206 |
# diarize_model = whisperx.DiarizationPipeline(device=device)
|
207 |
# diarize_segments = diarize_model(audio_input)
|
208 |
-
|
209 |
# # Combine transcription with speaker diarization
|
210 |
# result = whisperx.assign_word_speakers(diarize_segments, result)
|
211 |
|
@@ -214,7 +221,7 @@ def erase(image=None, mask=None):
|
|
214 |
# for segment in result["segments"]:
|
215 |
# if not isinstance(segment, dict):
|
216 |
# continue
|
217 |
-
|
218 |
# speaker = f"[Speaker {segment.get('speaker', 'Unknown')}]"
|
219 |
# start_time = f"{float(segment.get('start', 0)):.2f}"
|
220 |
# end_time = f"{float(segment.get('end', 0)):.2f}"
|
@@ -231,6 +238,32 @@ def erase(image=None, mask=None):
|
|
231 |
# torch.cuda.empty_cache()
|
232 |
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
@spaces.GPU(duration=120)
|
235 |
def main(*args):
|
236 |
api_num = args[0]
|
@@ -247,6 +280,8 @@ def main(*args):
|
|
247 |
return erase(*args)
|
248 |
# elif api_num == 6:
|
249 |
# return transcribe(*args)
|
|
|
|
|
250 |
|
251 |
|
252 |
rmbg_tab = gr.Interface(
|
@@ -349,7 +384,49 @@ transcribe_tab = gr.Interface(
|
|
349 |
title="Audio Transcription",
|
350 |
description="Upload an audio file to extract text using WhisperX with speaker diarization",
|
351 |
api_name="transcribe",
|
352 |
-
examples=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
)
|
354 |
|
355 |
demo = gr.TabbedInterface(
|
@@ -357,20 +434,19 @@ demo = gr.TabbedInterface(
|
|
357 |
rmbg_tab,
|
358 |
outpaint_tab,
|
359 |
inpaint_tab,
|
360 |
-
# sam2_tab,
|
361 |
erase_tab,
|
362 |
transcribe_tab,
|
|
|
363 |
],
|
364 |
[
|
365 |
"remove background",
|
366 |
"outpainting",
|
367 |
"inpainting",
|
368 |
-
# "sam2",
|
369 |
"erase",
|
370 |
-
|
|
|
371 |
],
|
372 |
title="Utilities that require GPU",
|
373 |
)
|
374 |
|
375 |
-
|
376 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from loadimg import load_img
|
5 |
from torchvision import transforms
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForImageSegmentation,
|
8 |
+
pipeline,
|
9 |
+
MBartForConditionalGeneration,
|
10 |
+
MBart50TokenizerFast,
|
11 |
+
)
|
12 |
from diffusers import FluxFillPipeline
|
13 |
from PIL import Image, ImageOps
|
14 |
|
|
|
16 |
import numpy as np
|
17 |
from simple_lama_inpainting import SimpleLama
|
18 |
from contextlib import contextmanager
|
19 |
+
|
20 |
# import whisperx
|
21 |
import gc
|
22 |
|
23 |
+
|
24 |
@contextmanager
|
25 |
def float32_high_matmul_precision():
|
26 |
torch.set_float32_matmul_precision("high")
|
|
|
194 |
# model = whisperx.load_model("large-v2", device, compute_type=compute_type)
|
195 |
# audio_input = whisperx.load_audio(audio)
|
196 |
# result = model.transcribe(audio_input, batch_size=batch_size)
|
197 |
+
|
198 |
# # Clear GPU memory
|
199 |
# del model
|
200 |
# gc.collect()
|
|
|
212 |
# # 3. Assign speaker labels
|
213 |
# diarize_model = whisperx.DiarizationPipeline(device=device)
|
214 |
# diarize_segments = diarize_model(audio_input)
|
215 |
+
|
216 |
# # Combine transcription with speaker diarization
|
217 |
# result = whisperx.assign_word_speakers(diarize_segments, result)
|
218 |
|
|
|
221 |
# for segment in result["segments"]:
|
222 |
# if not isinstance(segment, dict):
|
223 |
# continue
|
224 |
+
|
225 |
# speaker = f"[Speaker {segment.get('speaker', 'Unknown')}]"
|
226 |
# start_time = f"{float(segment.get('start', 0)):.2f}"
|
227 |
# end_time = f"{float(segment.get('end', 0)):.2f}"
|
|
|
238 |
# torch.cuda.empty_cache()
|
239 |
|
240 |
|
241 |
+
def translate_text(text, source_lang, target_lang):
|
242 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
243 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
244 |
+
|
245 |
+
# Set source language
|
246 |
+
tokenizer.src_lang = source_lang
|
247 |
+
|
248 |
+
# Encode the input text
|
249 |
+
encoded_text = tokenizer(text, return_tensors="pt")
|
250 |
+
|
251 |
+
# Generate translation
|
252 |
+
generated_tokens = model.generate(
|
253 |
+
**encoded_text,
|
254 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[target_lang]
|
255 |
+
)
|
256 |
+
|
257 |
+
# Decode the generated tokens
|
258 |
+
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
259 |
+
|
260 |
+
# Clear GPU memory
|
261 |
+
del model
|
262 |
+
gc.collect()
|
263 |
+
torch.cuda.empty_cache()
|
264 |
+
|
265 |
+
return translation
|
266 |
+
|
267 |
@spaces.GPU(duration=120)
|
268 |
def main(*args):
|
269 |
api_num = args[0]
|
|
|
280 |
return erase(*args)
|
281 |
# elif api_num == 6:
|
282 |
# return transcribe(*args)
|
283 |
+
elif api_num == 7:
|
284 |
+
return translate_text(*args)
|
285 |
|
286 |
|
287 |
rmbg_tab = gr.Interface(
|
|
|
384 |
title="Audio Transcription",
|
385 |
description="Upload an audio file to extract text using WhisperX with speaker diarization",
|
386 |
api_name="transcribe",
|
387 |
+
examples=[],
|
388 |
+
)
|
389 |
+
|
390 |
+
translate_tab = gr.Interface(
|
391 |
+
fn=main,
|
392 |
+
inputs=[
|
393 |
+
gr.Number(value=7, interactive=False),
|
394 |
+
gr.Textbox(label="Text to translate"),
|
395 |
+
gr.Dropdown(
|
396 |
+
choices=[
|
397 |
+
"ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX",
|
398 |
+
"gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV",
|
399 |
+
"my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN",
|
400 |
+
"zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID",
|
401 |
+
"ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF",
|
402 |
+
"pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA",
|
403 |
+
"ur_PK", "xh_ZA", "gl_ES", "sl_SI"
|
404 |
+
],
|
405 |
+
label="Source Language",
|
406 |
+
value="en_XX"
|
407 |
+
),
|
408 |
+
gr.Dropdown(
|
409 |
+
choices=[
|
410 |
+
"ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX",
|
411 |
+
"gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV",
|
412 |
+
"my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN",
|
413 |
+
"zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID",
|
414 |
+
"ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF",
|
415 |
+
"pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA",
|
416 |
+
"ur_PK", "xh_ZA", "gl_ES", "sl_SI"
|
417 |
+
],
|
418 |
+
label="Target Language",
|
419 |
+
value="fr_XX"
|
420 |
+
)
|
421 |
+
],
|
422 |
+
outputs=gr.Textbox(label="Translated Text"),
|
423 |
+
title="Text Translation",
|
424 |
+
description="Translate text between multiple languages using mBART-50",
|
425 |
+
api_name="translate",
|
426 |
+
examples=[
|
427 |
+
[7, "Hello, how are you?", "en_XX", "fr_XX"],
|
428 |
+
[7, "Bonjour, comment allez-vous?", "fr_XX", "en_XX"]
|
429 |
+
]
|
430 |
)
|
431 |
|
432 |
demo = gr.TabbedInterface(
|
|
|
434 |
rmbg_tab,
|
435 |
outpaint_tab,
|
436 |
inpaint_tab,
|
|
|
437 |
erase_tab,
|
438 |
transcribe_tab,
|
439 |
+
translate_tab
|
440 |
],
|
441 |
[
|
442 |
"remove background",
|
443 |
"outpainting",
|
444 |
"inpainting",
|
|
|
445 |
"erase",
|
446 |
+
"transcribe",
|
447 |
+
"translate"
|
448 |
],
|
449 |
title="Utilities that require GPU",
|
450 |
)
|
451 |
|
452 |
+
demo.launch()
|
|
requirements.txt
CHANGED
@@ -3,7 +3,7 @@ spaces
|
|
3 |
torch
|
4 |
torchvision
|
5 |
git+https://github.com/huggingface/diffusers.git
|
6 |
-
transformers
|
7 |
safetensors
|
8 |
accelerate
|
9 |
sentencepiece
|
@@ -22,4 +22,5 @@ einops
|
|
22 |
# git+https://github.com/facebookresearch/sam2.git
|
23 |
matplotlib
|
24 |
simple-lama-inpainting
|
25 |
-
# git+https://github.com/m-bain/whisperX.git
|
|
|
|
3 |
torch
|
4 |
torchvision
|
5 |
git+https://github.com/huggingface/diffusers.git
|
6 |
+
transformers>=4.30.0
|
7 |
safetensors
|
8 |
accelerate
|
9 |
sentencepiece
|
|
|
22 |
# git+https://github.com/facebookresearch/sam2.git
|
23 |
matplotlib
|
24 |
simple-lama-inpainting
|
25 |
+
# git+https://github.com/m-bain/whisperX.git
|
26 |
+
sacremoses
|