reset pytorch matrix multiplication precision for rmbg
Browse files
app.py
CHANGED
|
@@ -10,21 +10,6 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
| 10 |
import numpy as np
|
| 11 |
from simple_lama_inpainting import SimpleLama
|
| 12 |
|
| 13 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 14 |
-
|
| 15 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 16 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 17 |
-
)
|
| 18 |
-
birefnet.to("cuda")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
transform_image = transforms.Compose(
|
| 22 |
-
[
|
| 23 |
-
transforms.Resize((1024, 1024)),
|
| 24 |
-
transforms.ToTensor(),
|
| 25 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 26 |
-
]
|
| 27 |
-
)
|
| 28 |
|
| 29 |
pipe = FluxFillPipeline.from_pretrained(
|
| 30 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
|
@@ -113,6 +98,18 @@ def rmbg(image=None, url=None):
|
|
| 113 |
image = url
|
| 114 |
image = load_img(image).convert("RGB")
|
| 115 |
image_size = image.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 117 |
# Prediction
|
| 118 |
with torch.no_grad():
|
|
@@ -121,6 +118,7 @@ def rmbg(image=None, url=None):
|
|
| 121 |
pred_pil = transforms.ToPILImage()(pred)
|
| 122 |
mask = pred_pil.resize(image_size)
|
| 123 |
image.putalpha(mask)
|
|
|
|
| 124 |
return image
|
| 125 |
|
| 126 |
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
from simple_lama_inpainting import SimpleLama
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
pipe = FluxFillPipeline.from_pretrained(
|
| 15 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
|
|
|
| 98 |
image = url
|
| 99 |
image = load_img(image).convert("RGB")
|
| 100 |
image_size = image.size
|
| 101 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 102 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 103 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 104 |
+
)
|
| 105 |
+
birefnet.to("cuda")
|
| 106 |
+
transform_image = transforms.Compose(
|
| 107 |
+
[
|
| 108 |
+
transforms.Resize((1024, 1024)),
|
| 109 |
+
transforms.ToTensor(),
|
| 110 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 111 |
+
]
|
| 112 |
+
)
|
| 113 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 114 |
# Prediction
|
| 115 |
with torch.no_grad():
|
|
|
|
| 118 |
pred_pil = transforms.ToPILImage()(pred)
|
| 119 |
mask = pred_pil.resize(image_size)
|
| 120 |
image.putalpha(mask)
|
| 121 |
+
torch.set_float32_matmul_precision(["high", "highest"][1])
|
| 122 |
return image
|
| 123 |
|
| 124 |
|