File size: 2,598 Bytes
7dc7c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from datasets import load_dataset
import torch
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
from loadimg import load_img

device = 'cuda' if torch.cuda.is_available() else 'cpu' # we should rlly check for mps but, who uses macs (this is a space. lol)

processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
model = AutoModelForZeroShotImageClassification.from_pretrained("openai/clip-vit-large-patch14", device_map = device)

class Instance:
    def __init__(self, dataset, token=None, split="train"):
        self.dataset = dataset
        self.token = token
        self.split = split
        self.data = load_dataset(self.dataset, split=self.split)
        self.data = self.data.add_faiss_index("embeddings")
    
    def embed(batch):
        """a function that embeds a batch of images and returns the embeddings intended for embedding already existing images in an external dataset. (unused)"""
        pixel_values = processor(images = batch["image"], return_tensors="pt")['pixel_values']
        pixel_values = pixel_values.to(device)
        img_emb = model.get_image_features(pixel_values)
        batch["embeddings"] = img_emb
        return batch
    
    def search(self, query: str, k: int = 3 ):
        """

        A function that embeds a query image and returns the most probable results.

        

        Args:

            query: the image to search for

            k: the number of results to return

        

        Returns:

            scores: the scores of the retrieved examples (cosine similarity i think in this case)

            retrieved_examples: the retrieved examples

        """

        pixel_values = processor(images = query, return_tensors="pt")['pixel_values']
        pixel_values = pixel_values.to(device)
        img_emb = model.get_image_features(pixel_values)[0]
        img_emb = img_emb.cpu().detach().numpy()

        scores, retrieved_examples = self.data.get_nearest_examples(
            "embeddings", img_emb,
            k=k
        )

        return scores, retrieved_examples

    def high_level_search(self, img):
        """

        High level wrapper for the search function.



        Args:

            img: input image (path, url, pillow or numpy)

        

        Returns:

            scores: the scores of the retrieved examples (cosine similarity i think in this case)

            retrieved_examples: the retrieved examples

        """
        image = load_img(img)
        scores, retrieved_examples = self.search(image)