Hyoung-Kyu Song
Reinitialize demo with published github repository. With Gradio 4.x
16c8067
raw
history blame
9.77 kB
import platform
import subprocess
from pathlib import Path
from typing import Dict, List, Tuple, TypedDict, Union
import cv2
import numpy as np
import yt_dlp
from loguru import logger
from tqdm import tqdm
from nota_wav2lip.util import FFMPEG_LOGGING_MODE
class LabelInfo(TypedDict):
text: str
conf: int
url: str
bbox_xywhn: Dict[int, Tuple[float, float, float, float]]
def frame_to_time(frame_id: int, fps=25) -> str:
seconds = frame_id / fps
hours = int(seconds // 3600)
seconds -= 3600 * hours
minutes = int(seconds // 60)
seconds -= 60 * minutes
seconds_int = int(seconds)
seconds_milli = int((seconds - int(seconds)) * 1e3)
return f"{hours:02d}:{minutes:02d}:{seconds_int:02d}.{seconds_milli:03d}" # HH:MM:SS.mmm
def save_audio_file(input_path, start_frame_id, to_frame_id, output_path=None):
input_path = Path(input_path)
output_path = output_path if output_path is not None else input_path.with_suffix('.wav')
ss = frame_to_time(start_frame_id)
to = frame_to_time(to_frame_id)
subprocess.call(
f"ffmpeg {FFMPEG_LOGGING_MODE['ERROR']} -y -i {input_path} -vn -acodec pcm_s16le -ss {ss} -to {to} -ar 16000 -ac 1 {output_path}",
shell=platform.system() != 'Windows'
)
def merge_video_audio(video_path, audio_path, output_path):
subprocess.call(
f"ffmpeg {FFMPEG_LOGGING_MODE['ERROR']} -y -i {video_path} -i {audio_path} -strict experimental {output_path}",
shell=platform.system() != 'Windows'
)
def parse_lrs3_label(label_path) -> LabelInfo:
label_text = Path(label_path).read_text()
label_splitted = label_text.split('\n')
# Label validation
assert label_splitted[0].startswith("Text:")
assert label_splitted[1].startswith("Conf:")
assert label_splitted[2].startswith("Ref:")
assert label_splitted[4].startswith("FRAME")
label_info = LabelInfo(bbox_xywhn={})
label_info['text'] = label_splitted[0][len("Text: "):].strip()
label_info['conf'] = int(label_splitted[1][len("Conf: "):])
label_info['url'] = label_splitted[2][len("Ref: "):].strip()
for label_line in label_splitted[5:]:
bbox_splitted = [x.strip() for x in label_line.split('\t')]
if len(bbox_splitted) != 5:
continue
frame_index = int(bbox_splitted[0])
bbox_xywhn = tuple(map(float, bbox_splitted[1:]))
label_info['bbox_xywhn'][frame_index] = bbox_xywhn
return label_info
def _get_cropped_bbox(bbox_info_xywhn, original_width, original_height):
bbox_info = bbox_info_xywhn
x = bbox_info[0] * original_width
y = bbox_info[1] * original_height
w = bbox_info[2] * original_width
h = bbox_info[3] * original_height
x_min = max(0, int(x - 0.5 * w))
y_min = max(0, int(y))
x_max = min(original_width, int(x + 1.5 * w))
y_max = min(original_height, int(y + 1.5 * h))
cropped_width = x_max - x_min
cropped_height = y_max - y_min
if cropped_height > cropped_width:
offset = cropped_height - cropped_width
offset_low = min(x_min, offset // 2)
offset_high = min(offset - offset_low, original_width - x_max)
x_min -= offset_low
x_max += offset_high
else:
offset = cropped_width - cropped_height
offset_low = min(y_min, offset // 2)
offset_high = min(offset - offset_low, original_width - y_max)
y_min -= offset_low
y_max += offset_high
return x_min, y_min, x_max, y_max
def _get_smoothened_boxes(bbox_dict, bbox_smoothen_window):
boxes = [np.array(bbox_dict[frame_id]) for frame_id in sorted(bbox_dict)]
for i in range(len(boxes)):
window = boxes[len(boxes) - bbox_smoothen_window:] if i + bbox_smoothen_window > len(boxes) else boxes[i:i + bbox_smoothen_window]
boxes[i] = np.mean(window, axis=0)
for idx, frame_id in enumerate(sorted(bbox_dict)):
bbox_dict[frame_id] = (np.rint(boxes[idx])).astype(int).tolist()
return bbox_dict
def download_video_from_youtube(youtube_ref, output_path):
ydl_url = f"https://www.youtube.com/watch?v={youtube_ref}"
ydl_opts = {
'format': 'bestvideo[ext=mp4][height<=720]+bestaudio[ext=m4a]/best[ext=mp4][height<=720]',
'outtmpl': str(output_path),
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([ydl_url])
def resample_video(input_path, output_path):
subprocess.call(
f"ffmpeg {FFMPEG_LOGGING_MODE['INFO']} -y -i {input_path} -r 25 -preset veryfast {output_path}",
shell=platform.system() != 'Windows'
)
def _get_smoothen_xyxy_bbox(
label_bbox_xywhn: Dict[int, Tuple[float, float, float, float]],
original_width: int,
original_height: int,
bbox_smoothen_window: int = 5
) -> Dict[int, Tuple[float, float, float, float]]:
label_bbox_xyxy: Dict[int, Tuple[float, float, float, float]] = {}
for frame_id in sorted(label_bbox_xywhn):
frame_bbox_xywhn = label_bbox_xywhn[frame_id]
bbox_xyxy = _get_cropped_bbox(frame_bbox_xywhn, original_width, original_height)
label_bbox_xyxy[frame_id] = bbox_xyxy
label_bbox_xyxy = _get_smoothened_boxes(label_bbox_xyxy, bbox_smoothen_window=bbox_smoothen_window)
return label_bbox_xyxy
def get_start_end_frame_id(
label_bbox_xywhn: Dict[int, Tuple[float, float, float, float]],
) -> Tuple[int, int]:
frame_ids = list(label_bbox_xywhn.keys())
start_frame_id = min(frame_ids)
to_frame_id = max(frame_ids)
return start_frame_id, to_frame_id
def crop_video_with_bbox(
input_path,
label_bbox_xywhn: Dict[int, Tuple[float, float, float, float]],
start_frame_id,
to_frame_id,
output_path,
bbox_smoothen_window = 5,
frame_width = 224,
frame_height = 224,
fps = 25,
interpolation = cv2.INTER_CUBIC,
):
def frame_generator(cap):
if not cap.isOpened():
raise IOError("Error: Could not open video.")
while True:
ret, frame = cap.read()
if not ret:
break
yield frame
cap.release()
cap = cv2.VideoCapture(str(input_path))
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
label_bbox_xyxy = _get_smoothen_xyxy_bbox(label_bbox_xywhn, original_width, original_height, bbox_smoothen_window=bbox_smoothen_window)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(str(output_path), fourcc, fps, (frame_width, frame_height))
for frame_id, frame in tqdm(enumerate(frame_generator(cap))):
if start_frame_id <= frame_id <= to_frame_id:
x_min, y_min, x_max, y_max = label_bbox_xyxy[frame_id]
frame_cropped = frame[y_min:y_max, x_min:x_max]
frame_cropped = cv2.resize(frame_cropped, (frame_width, frame_height), interpolation=interpolation)
out.write(frame_cropped)
out.release()
def get_cropped_face_from_lrs3_label(
label_text_path: Union[Path, str],
video_root_dir: Union[Path, str],
bbox_smoothen_window: int = 5,
frame_width: int = 224,
frame_height: int = 224,
fps: int = 25,
interpolation = cv2.INTER_CUBIC,
ignore_cache: bool = False,
):
label_text_path = Path(label_text_path)
label_info = parse_lrs3_label(label_text_path)
start_frame_id, to_frame_id = get_start_end_frame_id(label_info['bbox_xywhn'])
video_root_dir = Path(video_root_dir)
video_cache_dir = video_root_dir / ".cache"
video_cache_dir.mkdir(parents=True, exist_ok=True)
output_video: Path = video_cache_dir / f"{label_info['url']}.mp4"
output_resampled_video: Path = output_video.with_name(f"{output_video.stem}-25fps.mp4")
output_cropped_audio: Path = output_video.with_name(f"{output_video.stem}-{label_text_path.stem}-cropped.wav")
output_cropped_video: Path = output_video.with_name(f"{output_video.stem}-{label_text_path.stem}-cropped.mp4")
output_cropped_with_audio: Path = video_root_dir / output_video.with_name(f"{output_video.stem}-{label_text_path.stem}.mp4").name
if not output_video.exists() or ignore_cache:
youtube_ref = label_info['url']
logger.info(f"Download Youtube video(https://www.youtube.com/watch?v={youtube_ref}) ... will be saved at {output_video}")
download_video_from_youtube(youtube_ref, output_path=output_video)
if not output_resampled_video.exists() or ignore_cache:
logger.info(f"Resampling video to 25 FPS ... will be saved at {output_resampled_video}")
resample_video(input_path=output_video, output_path=output_resampled_video)
if not output_cropped_audio.exists() or ignore_cache:
logger.info(f"Cut audio file with the given timestamps ... will be saved at {output_cropped_audio}")
save_audio_file(
output_resampled_video,
start_frame_id=start_frame_id,
to_frame_id=to_frame_id,
output_path=output_cropped_audio
)
logger.info(f"Naive crop the face region with the given frame labels ... will be saved at {output_cropped_video}")
crop_video_with_bbox(
output_resampled_video,
label_info['bbox_xywhn'],
start_frame_id,
to_frame_id,
output_path=output_cropped_video,
bbox_smoothen_window=bbox_smoothen_window,
frame_width=frame_width,
frame_height=frame_height,
fps=fps,
interpolation=interpolation
)
if not output_cropped_with_audio.exists() or ignore_cache:
logger.info(f"Merge an audio track with the cropped face sequence ... will be saved at {output_cropped_with_audio}")
merge_video_audio(output_cropped_video, output_cropped_audio, output_cropped_with_audio)