from typing import final import torch from torch import nn class Wav2LipBase(nn.Module): def __init__(self) -> None: super().__init__() self.audio_encoder = nn.Sequential() self.face_encoder_blocks = nn.ModuleList([]) self.face_decoder_blocks = nn.ModuleList([]) self.output_block = nn.Sequential() @final def forward(self, audio_sequences, face_sequences): # audio_sequences = (B, T, 1, 80, 16) B = audio_sequences.size(0) input_dim_size = len(face_sequences.size()) if input_dim_size > 4: audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0) audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1 feats = [] x = face_sequences for f in self.face_encoder_blocks: x = f(x) feats.append(x) x = audio_embedding for f in self.face_decoder_blocks: x = f(x) try: x = torch.cat((x, feats[-1]), dim=1) except Exception as e: print(x.size()) print(feats[-1].size()) raise e feats.pop() x = self.output_block(x) if input_dim_size > 4: x = torch.split(x, B, dim=0) # [(B, C, H, W)] outputs = torch.stack(x, dim=2) # (B, C, T, H, W) else: outputs = x return outputs