File size: 1,309 Bytes
80d5bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960e156
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import sqlite3
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForCausalLM

app = FastAPI()

# Load fine-tuned text-to-SQL model
MODEL_NAME = "budecosystem/sql-millennials-13b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) #AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)

def generate_sql(query):
    print(query)
    inputs = tokenizer(query, return_tensors="pt")
    outputs = model.generate(**inputs)
    print(outputs)
    sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("======>", sql_query)
    return sql_query

def execute_sql(sql_query):
    conn = sqlite3.connect("./ecommerce.db")
    cursor = conn.cursor()
    try:
        cursor.execute(sql_query)
        result = cursor.fetchall()
        conn.commit()
    except Exception as e:
        result = str(e)
    conn.close()
    return result

class QueryRequest(BaseModel):
    text: str

@app.post("/generate_sql/")
def get_sql(query: QueryRequest):
    sql_query = generate_sql(query.text)
    result = execute_sql(sql_query)
    return {"sql": sql_query, "result": result}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)