|
|
|
import streamlit as st |
|
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast |
|
pip install sentencepiece |
|
|
|
model_name = "facebook/mbart-large-50" |
|
tokenizer = MBart50TokenizerFast.from_pretrained(model_name) |
|
model = MBartForConditionalGeneration.from_pretrained(model_name) |
|
|
|
|
|
st.title("Multilingual Translator") |
|
|
|
source_text = st.text_area("Enter text to translate") |
|
target_language = st.selectbox("Choose target language", tokenizer.lang_codes.keys()) |
|
|
|
if st.button("Translate"): |
|
translated_text = translate_text(model, tokenizer, source_text, target_language) |
|
st.write("Translated text:", translated_text) |
|
|
|
|
|
def translate_text(model, tokenizer, source_text, target_language): |
|
inputs = tokenizer(source_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[target_language]) |
|
translated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] |
|
return translated_text |
|
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
model_name = "facebook/mbart-large-50" |
|
AutoConfig.from_pretrained(model_name).clear_cache() |
|
AutoModelForSeq2SeqLM.from_pretrained(model_name).clear_cache() |
|
AutoTokenizer.from_pretrained(model_name).clear_cache() |
|
|
|
|
|
|