noumanjavaid commited on
Commit
94e6ccb
·
verified ·
1 Parent(s): b995614

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -0
app.py CHANGED
@@ -98,6 +98,25 @@ dataset[0]["audio"]
98
  # **4**. Create a function to preprocess the audio `array` with the feature extractor, and truncate and pad the sequences into tidy rectangular tensors. The most important thing to remember is to call the audio `array` in the feature extractor since the `array` - the actual speech signal - is the model input.
99
  #
100
  # Once you have a preprocessing function, use the [map()](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) function to speed up processing by applying the function to batches of examples in the dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  # %%
103
  def preprocess_function(examples):
 
98
  # **4**. Create a function to preprocess the audio `array` with the feature extractor, and truncate and pad the sequences into tidy rectangular tensors. The most important thing to remember is to call the audio `array` in the feature extractor since the `array` - the actual speech signal - is the model input.
99
  #
100
  # Once you have a preprocessing function, use the [map()](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) function to speed up processing by applying the function to batches of examples in the dataset.
101
+ import torch
102
+
103
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
104
+ model.to(device) # Move model to the device
105
+
106
+ optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) # Example optimizer
107
+
108
+ for epoch in range(num_epochs): # Replace num_epochs
109
+ for batch in dataloader:
110
+ input_values = batch["input_values"].to(device)
111
+ labels = batch["labels"].to(device)
112
+
113
+ optimizer.zero_grad()
114
+ outputs = model(input_values, labels=labels)
115
+ loss = outputs.loss
116
+ loss.backward()
117
+ optimizer.step()
118
+
119
+ print(f"Epoch: {epoch+1}, Loss: {loss.item()}") # Print Loss for monitoring
120
 
121
  # %%
122
  def preprocess_function(examples):