noumanjavaid commited on
Commit
4262dbe
·
verified ·
1 Parent(s): 6fbe8c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -35
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import streamlit as st
2
  import pandas as pd
 
3
  def calculate_cost(num_pairs, gpu_type):
4
  if gpu_type == "Nvidia A100":
5
  daily_rate = 28
@@ -10,45 +11,54 @@ def calculate_cost(num_pairs, gpu_type):
10
  else: # AWS p4d.24xlarge
11
  daily_rate = 786.48
12
  time_per_pair = 0.25 # assuming it's four times as fast due to 8 GPUs
 
13
  total_time_minutes = num_pairs * time_per_pair
14
  total_time_hours = total_time_minutes / 60
15
  hourly_rate = daily_rate / 24
16
  total_cost = total_time_hours * hourly_rate
17
-
18
  return total_cost
19
- def main():
20
- st.title("GPU Cost Calculator")
21
- # Input for number of pairs
22
- num_pairs = st.number_input("Enter the number of pairs to process:", min_value=1, value=5)
23
- # Select GPU type
24
- gpu_type = st.selectbox(
25
- "Select GPU type:",
26
- ("Nvidia A100", "H100 80GB PCIe", "AWS p4d.24xlarge (8x A100)")
27
- )
28
- # Calculate button
29
- if st.button("Calculate Cost"):
30
- cost = calculate_cost(num_pairs, gpu_type)
31
- st.write(f"Estimated cost for processing {num_pairs} pairs on {gpu_type}: ${cost:.4f}")
32
- # Display GPU information
33
- st.subheader("GPU Information")
34
- gpu_data = {
35
- "Provider": ["H100 80GB PCIe", "AWS (p4d.24xlarge)", "GPU Mart"],
36
- "GPU": ["Nvidia H100", "Nvidia A100 (8 GPUs)", "Nvidia A100"],
37
- "vCPUs": [16, 96, "Dual 18-Core E5-2697v4"],
38
- "RAM": ["125 GB", "1152 GiB", "256 GB"],
39
- "GPU Memory": ["80 GB", "320 GB (8 x 40 GB)", "40 GB HBM2e"],
40
- "Instance Storage": ["Network Storage: 10Pb+", "8 x 1000 GB NVMe SSD", "240 GB SSD + 2TB NVMe + 8TB SATA"],
41
- "Network Bandwidth": ["Not Specified", "400 Gbps", "100Mbps - 1Gbps"],
42
- "On-Demand Price/hr": ["$3.29", "$32.77", "N/A"],
43
- "Daily Price": ["$78.96", "$786.48", "$28.00"],
44
- "Monthly Price": ["$2,368.80", "$23,594.40", "$799.00"],
45
- "1-Year Reserved (Hourly)": ["N/A", "$19.22", "N/A"],
46
- "3-Year Reserved (Hourly)": ["N/A", "$11.57", "N/A"]
47
- }
48
-
49
- df = pd.DataFrame(gpu_data)
50
- st.table(df)
51
- if name == "app":
52
- main()
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
+
4
  def calculate_cost(num_pairs, gpu_type):
5
  if gpu_type == "Nvidia A100":
6
  daily_rate = 28
 
11
  else: # AWS p4d.24xlarge
12
  daily_rate = 786.48
13
  time_per_pair = 0.25 # assuming it's four times as fast due to 8 GPUs
14
+
15
  total_time_minutes = num_pairs * time_per_pair
16
  total_time_hours = total_time_minutes / 60
17
  hourly_rate = daily_rate / 24
18
  total_cost = total_time_hours * hourly_rate
19
+
20
  return total_cost
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ st.set_page_config(page_title="GPU Cost Calculator", page_icon="🧮", layout="wide")
23
+
24
+ st.title("GPU Cost Calculator")
25
+
26
+ # Input for number of pairs
27
+ num_pairs = st.number_input("Enter the number of pairs to process:", min_value=1, value=5)
28
+
29
+ # Input for shirt size
30
+ shirt_size = st.text_input("Enter shirt size (e.g., S, M, L, XL):")
31
+
32
+ # Input for bottom wear size
33
+ bottom_wear_size = st.text_input("Enter bottom wear size (e.g., S, M, L, XL):")
34
+
35
+ # Select GPU type
36
+ gpu_type = st.selectbox(
37
+ "Select GPU type:",
38
+ ("Nvidia A100", "H100 80GB PCIe", "AWS p4d.24xlarge (8x A100)")
39
+ )
40
+
41
+ # Calculate button
42
+ if st.button("Calculate Cost"):
43
+ cost = calculate_cost(num_pairs, gpu_type)
44
+ st.write(f"Estimated cost for processing {num_pairs} pairs on {gpu_type}: ${cost:.4f}")
45
+
46
+ # Display GPU information
47
+ st.subheader("GPU Information")
48
+ gpu_data = {
49
+ "Provider": ["H100 80GB PCIe", "AWS (p4d.24xlarge)", "GPU Mart"],
50
+ "GPU": ["Nvidia H100", "Nvidia A100 (8 GPUs)", "Nvidia A100"],
51
+ "vCPUs": [16, 96, "Dual 18-Core E5-2697v4"],
52
+ "RAM": ["125 GB", "1152 GiB", "256 GB"],
53
+ "GPU Memory": ["80 GB", "320 GB (8 x 40 GB)", "40 GB HBM2e"],
54
+ "Instance Storage": ["Network Storage: 10Pb+", "8 x 1000 GB NVMe SSD", "240 GB SSD + 2TB NVMe + 8TB SATA"],
55
+ "Network Bandwidth": ["Not Specified", "400 Gbps", "100Mbps - 1Gbps"],
56
+ "On-Demand Price/hr": ["$3.29", "$32.77", "N/A"],
57
+ "Daily Price": ["$78.96", "$786.48", "$28.00"],
58
+ "Monthly Price": ["$2,368.80", "$23,594.40", "$799.00"],
59
+ "1-Year Reserved (Hourly)": ["N/A", "$19.22", "N/A"],
60
+ "3-Year Reserved (Hourly)": ["N/A", "$11.57", "N/A"]
61
+ }
62
 
63
+ df = pd.DataFrame(gpu_data)
64
+ st.table(df)