Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def calculate_cost(num_pairs, gpu_type):
|
5 |
+
if gpu_type == "Nvidia A100":
|
6 |
+
daily_rate = 28
|
7 |
+
time_per_pair = 1 # minute
|
8 |
+
elif gpu_type == "H100 80GB PCIe":
|
9 |
+
daily_rate = 78.96
|
10 |
+
time_per_pair = 0.5 # assuming it's twice as fast
|
11 |
+
else: # AWS p4d.24xlarge
|
12 |
+
daily_rate = 786.48
|
13 |
+
time_per_pair = 0.25 # assuming it's four times as fast due to 8 GPUs
|
14 |
+
|
15 |
+
total_time_minutes = num_pairs * time_per_pair
|
16 |
+
total_time_hours = total_time_minutes / 60
|
17 |
+
hourly_rate = daily_rate / 24
|
18 |
+
total_cost = total_time_hours * hourly_rate
|
19 |
+
|
20 |
+
return total_cost
|
21 |
+
|
22 |
+
st.set_page_config(page_title="GPU Cost Calculator", page_icon="🧮", layout="wide")
|
23 |
+
|
24 |
+
st.title("GPU Cost Calculator")
|
25 |
+
|
26 |
+
# Input for number of pairs
|
27 |
+
num_pairs = st.number_input("Enter the number of pairs to process:", min_value=1, value=5)
|
28 |
+
|
29 |
+
# Select GPU type
|
30 |
+
gpu_type = st.selectbox(
|
31 |
+
"Select GPU type:",
|
32 |
+
("Nvidia A100", "H100 80GB PCIe", "AWS p4d.24xlarge (8x A100)")
|
33 |
+
)
|
34 |
+
|
35 |
+
# Calculate button
|
36 |
+
if st.button("Calculate Cost"):
|
37 |
+
cost = calculate_cost(num_pairs, gpu_type)
|
38 |
+
st.write(f"Estimated cost for processing {num_pairs} pairs on {gpu_type}: ${cost:.4f}")
|
39 |
+
|
40 |
+
# Display GPU information
|
41 |
+
st.subheader("GPU Information")
|
42 |
+
gpu_data = {
|
43 |
+
"Provider": ["H100 80GB PCIe", "AWS (p4d.24xlarge)", "GPU Mart"],
|
44 |
+
"GPU": ["Nvidia H100", "Nvidia A100 (8 GPUs)", "Nvidia A100"],
|
45 |
+
"vCPUs": [16, 96, "Dual 18-Core E5-2697v4"],
|
46 |
+
"RAM": ["125 GB", "1152 GiB", "256 GB"],
|
47 |
+
"GPU Memory": ["80 GB", "320 GB (8 x 40 GB)", "40 GB HBM2e"],
|
48 |
+
"Instance Storage": ["Network Storage: 10Pb+", "8 x 1000 GB NVMe SSD", "240 GB SSD + 2TB NVMe + 8TB SATA"],
|
49 |
+
"Network Bandwidth": ["Not Specified", "400 Gbps", "100Mbps - 1Gbps"],
|
50 |
+
"On-Demand Price/hr": ["$3.29", "$32.77", "N/A"],
|
51 |
+
"Daily Price": ["$78.96", "$786.48", "$28.00"],
|
52 |
+
"Monthly Price": ["$2,368.80", "$23,594.40", "$799.00"],
|
53 |
+
"1-Year Reserved (Hourly)": ["N/A", "$19.22", "N/A"],
|
54 |
+
"3-Year Reserved (Hourly)": ["N/A", "$11.57", "N/A"]
|
55 |
+
}
|
56 |
+
|
57 |
+
df = pd.DataFrame(gpu_data)
|
58 |
+
st.table(df)
|