Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image, ImageDraw, ImageFont, ExifTags
|
3 |
+
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import fitz # PyMuPDF for PDF handling = jls_extract_def()
|
9 |
+
import docx # For handling Word documents
|
10 |
+
from difflib import HtmlDiff, SequenceMatcher # For text comparison
|
11 |
+
import os
|
12 |
+
import logging
|
13 |
+
import base64
|
14 |
+
import zipfile
|
15 |
+
from typing import Dict
|
16 |
+
from deepface import DeepFace # For deepfake detection
|
17 |
+
import pytesseract # For OCR in watermark detection
|
18 |
+
|
19 |
+
# Page configuration with custom theme
|
20 |
+
st.set_page_config(
|
21 |
+
page_title="Centurion Analysis Tool", # Title of the web app
|
22 |
+
page_icon="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png", # Icon displayed in the browser tab
|
23 |
+
layout="wide", # Layout of the app# Initial state of the sidebar
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Apply custom theme using CSS
|
29 |
+
st.markdown(
|
30 |
+
"""
|
31 |
+
<style>
|
32 |
+
{
|
33 |
+
--primary-color: #aba9aa; # Primary color for the theme
|
34 |
+
--background-color: #fdfdfd; # Background color
|
35 |
+
--secondary-background-color: #4a4c56; # Secondary background color
|
36 |
+
--text-color: #030104; # Text color
|
37 |
+
}
|
38 |
+
body {
|
39 |
+
background-color: var(--background-color); # Set background color
|
40 |
+
}
|
41 |
+
</style>
|
42 |
+
""",
|
43 |
+
unsafe_allow_html=True # Allow HTML in markdown
|
44 |
+
)
|
45 |
+
|
46 |
+
# Display the title with the icon
|
47 |
+
st.markdown(
|
48 |
+
"""
|
49 |
+
<div class="title-container">
|
50 |
+
<img class="title-icon" src="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png" alt="Icon" width="50" height="50">
|
51 |
+
<div class="title-text" style="font-size: 36px; font-weight: bold; color: var(--text-color);">Centurion</div>
|
52 |
+
</div>
|
53 |
+
""",
|
54 |
+
unsafe_allow_html=True # Allow HTML in markdown
|
55 |
+
)
|
56 |
+
|
57 |
+
# Configure logging
|
58 |
+
logging.basicConfig(level=logging.INFO) # Set logging level to INFO
|
59 |
+
logger = logging.getLogger(__name__) # Create a logger
|
60 |
+
|
61 |
+
UPLOAD_DIR = "uploaded_files" # Directory to store uploaded files
|
62 |
+
NVIDIA_API_KEY = "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" # Store API key securely
|
63 |
+
|
64 |
+
# Create upload directory if it doesn't exist
|
65 |
+
if not os.path.exists(UPLOAD_DIR):
|
66 |
+
os.makedirs(UPLOAD_DIR) # Create the directory
|
67 |
+
|
68 |
+
class NVIDIAOCRHandler:
|
69 |
+
def __init__(self):
|
70 |
+
self.api_key = NVIDIA_API_KEY # Initialize API key
|
71 |
+
self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet" # NVIDIA OCR API URL
|
72 |
+
self.headers = {"Authorization": f"Bearer {self.api_key}"} # Set headers for API requests
|
73 |
+
|
74 |
+
def process_image(self, file_path: str) -> str:
|
75 |
+
try:
|
76 |
+
with open(file_path, "rb") as image_file: # Open the image file
|
77 |
+
files = {'image': image_file} # Prepare file for upload
|
78 |
+
response = requests.post(self.nvai_url, headers=self.headers, files=files) # Send POST request
|
79 |
+
response.raise_for_status() # Raise an error for bad responses
|
80 |
+
result = response.json() # Parse JSON response
|
81 |
+
return result.get("text", "") # Return extracted text
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"Error processing image: {str(e)}") # Display error message
|
84 |
+
return "" # Return empty string on error
|
85 |
+
|
86 |
+
def save_uploaded_file(uploaded_file):
|
87 |
+
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) # Create file path
|
88 |
+
with open(file_path, "wb") as f: # Open file for writing
|
89 |
+
f.write(uploaded_file.getbuffer()) # Write uploaded file to disk
|
90 |
+
return file_path # Return the file path
|
91 |
+
|
92 |
+
def upload_asset(input_data: bytes, description: str) -> str:
|
93 |
+
try:
|
94 |
+
assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets" # NVIDIA asset upload URL
|
95 |
+
headers = {
|
96 |
+
"Authorization": f"Bearer {NVIDIA_API_KEY}", # Set authorization header
|
97 |
+
"Content-Type": "application/json", # Set content type
|
98 |
+
"accept": "application/json", # Accept JSON response
|
99 |
+
}
|
100 |
+
|
101 |
+
payload = {"contentType": "image/jpeg", "description": description} # Prepare payload for upload
|
102 |
+
|
103 |
+
response = requests.post(assets_url, headers=headers, json=payload)
|
104 |
+
response.raise_for_status()
|
105 |
+
|
106 |
+
asset_url = response.json()["uploadUrl"]
|
107 |
+
asset_id = response.json()["assetId"]
|
108 |
+
|
109 |
+
response = requests.put(
|
110 |
+
asset_url,
|
111 |
+
data=input_data,
|
112 |
+
headers={"x-amz-meta-nvcf-asset-description": description, "content-type": "image/jpeg"},
|
113 |
+
timeout=300,
|
114 |
+
)
|
115 |
+
|
116 |
+
response.raise_for_status()
|
117 |
+
return asset_id
|
118 |
+
except Exception as e:
|
119 |
+
st.error(f"Error uploading asset: {str(e)}")
|
120 |
+
return ""
|
121 |
+
|
122 |
+
def extract_text_pdf(file_path):
|
123 |
+
doc = fitz.open(file_path)
|
124 |
+
text = ""
|
125 |
+
for page in doc:
|
126 |
+
text += page.get_text()
|
127 |
+
return text
|
128 |
+
|
129 |
+
def extract_text_word(file_path):
|
130 |
+
doc = docx.Document(file_path)
|
131 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
132 |
+
return text
|
133 |
+
|
134 |
+
def compare_texts(text1, text2):
|
135 |
+
differ = HtmlDiff()
|
136 |
+
return differ.make_file(
|
137 |
+
text1.splitlines(), text2.splitlines(),
|
138 |
+
fromdesc="Original", todesc="Modified", context=True, numlines=2
|
139 |
+
)
|
140 |
+
|
141 |
+
def calculate_similarity(text1, text2):
|
142 |
+
matcher = SequenceMatcher(None, text1, text2)
|
143 |
+
return matcher.ratio()
|
144 |
+
|
145 |
+
logging.basicConfig(
|
146 |
+
level=logging.INFO,
|
147 |
+
format='%(asctime)s - %(levelname)s: %(message)s'
|
148 |
+
)
|
149 |
+
logger = logging.getLogger(__name__)
|
150 |
+
|
151 |
+
class NvidiaDeepfakeDetector:
|
152 |
+
def __init__(self):
|
153 |
+
"""
|
154 |
+
Initialize Deepfake Detection with configuration
|
155 |
+
"""
|
156 |
+
self.api_key = f"Bearer NVIDIA_API_KEY"
|
157 |
+
self.upload_dir = os.getenv('UPLOAD_DIR', '/tmp')
|
158 |
+
self.max_image_size = 5 * 1024 * 1024 # 5MB
|
159 |
+
self.invoke_url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection"
|
160 |
+
|
161 |
+
# Validate critical configurations
|
162 |
+
self._validate_config()
|
163 |
+
|
164 |
+
def _validate_config(self):
|
165 |
+
"""
|
166 |
+
Validate critical configuration parameters
|
167 |
+
"""
|
168 |
+
if not self.api_key:
|
169 |
+
raise ValueError("NVIDIA API Key is not configured")
|
170 |
+
|
171 |
+
if not os.path.exists(self.upload_dir):
|
172 |
+
os.makedirs(self.upload_dir, exist_ok=True)
|
173 |
+
|
174 |
+
def validate_image(self, image_bytes: bytes) -> bool:
|
175 |
+
"""
|
176 |
+
Validate image before processing
|
177 |
+
|
178 |
+
Args:
|
179 |
+
image_bytes (bytes): Image data
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
bool: Image validation status
|
183 |
+
"""
|
184 |
+
try:
|
185 |
+
# Check image size
|
186 |
+
if len(image_bytes) > self.max_image_size:
|
187 |
+
st.error(f"Image exceeds maximum size of {self.max_image_size} bytes")
|
188 |
+
return False
|
189 |
+
|
190 |
+
# Try opening image
|
191 |
+
Image.open(BytesIO(image_bytes))
|
192 |
+
return True
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
st.error(f"Image validation failed: {e}")
|
196 |
+
return False
|
197 |
+
|
198 |
+
def upload_asset(self, path: str, desc: str) -> str:
|
199 |
+
"""
|
200 |
+
Upload asset to NVIDIA's asset management system
|
201 |
+
|
202 |
+
Args:
|
203 |
+
path (str): Image file path
|
204 |
+
desc (str): Asset description
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
str: Asset ID
|
208 |
+
"""
|
209 |
+
try:
|
210 |
+
assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets"
|
211 |
+
headers = {
|
212 |
+
"Content-Type": "application/json",
|
213 |
+
"Authorization": f"Bearer {self.api_key}",
|
214 |
+
"accept": "application/json",
|
215 |
+
}
|
216 |
+
|
217 |
+
# Create asset
|
218 |
+
payload = {
|
219 |
+
"contentType": "image/png",
|
220 |
+
"description": desc
|
221 |
+
}
|
222 |
+
|
223 |
+
response = requests.post(assets_url, headers=headers, json=payload, timeout=30)
|
224 |
+
response.raise_for_status()
|
225 |
+
|
226 |
+
upload_url = response.json()["uploadUrl"]
|
227 |
+
asset_id = response.json()["assetId"]
|
228 |
+
|
229 |
+
# Upload image
|
230 |
+
with open(path, "rb") as input_data:
|
231 |
+
upload_response = requests.put(
|
232 |
+
upload_url,
|
233 |
+
data=input_data,
|
234 |
+
headers={"Content-Type": "image/png"},
|
235 |
+
timeout=300
|
236 |
+
)
|
237 |
+
upload_response.raise_for_status()
|
238 |
+
|
239 |
+
return asset_id
|
240 |
+
|
241 |
+
except requests.exceptions.RequestException as e:
|
242 |
+
logger.error(f"Asset upload failed: {e}")
|
243 |
+
st.error("Failed to upload image asset")
|
244 |
+
return ""
|
245 |
+
"""
|
246 |
+
Detect deepfake using NVIDIA API
|
247 |
+
|
248 |
+
Args:
|
249 |
+
image_bytes (bytes): Image data
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
Optional[Dict]: Detection results
|
253 |
+
"""
|
254 |
+
# Validate image
|
255 |
+
if not self.validate_image(image_bytes):
|
256 |
+
return None
|
257 |
+
|
258 |
+
try:
|
259 |
+
# Temporary image path
|
260 |
+
temp_path = os.path.join(self.upload_dir, "temp_deepfake_image.png")
|
261 |
+
with open(temp_path, "wb") as f:
|
262 |
+
f.write(image_bytes)
|
263 |
+
|
264 |
+
# Encode image
|
265 |
+
image_b64 = base64.b64encode(image_bytes).decode()
|
266 |
+
|
267 |
+
# Payload preparation
|
268 |
+
if len(image_b64) < 180_000:
|
269 |
+
payload = {"input": [f"data:image/png;base64,{image_b64}"]}
|
270 |
+
headers = {
|
271 |
+
"Content-Type": "application/json",
|
272 |
+
"Authorization": f"Bearer {self.api_key}",
|
273 |
+
"Accept": "application/json",
|
274 |
+
}
|
275 |
+
else:
|
276 |
+
# Large image asset upload
|
277 |
+
asset_id = self.upload_asset(temp_path, "Deepfake Detection")
|
278 |
+
payload = {"input": [f"data:image/png;asset_id,{asset_id}"]}
|
279 |
+
headers = {
|
280 |
+
"Content-Type": "application/json",
|
281 |
+
"NVCF-INPUT-ASSET-REFERENCES": asset_id,
|
282 |
+
"Authorization": f"Bearer {self.api_key}",
|
283 |
+
}
|
284 |
+
|
285 |
+
# API Call
|
286 |
+
response = requests.post(self.invoke_url, headers=headers, json=payload)
|
287 |
+
response.raise_for_status()
|
288 |
+
|
289 |
+
# Clean up temporary file
|
290 |
+
os.remove(temp_path)
|
291 |
+
|
292 |
+
return response.json()
|
293 |
+
|
294 |
+
except requests.exceptions.RequestException as e:
|
295 |
+
logger.error(f"Deepfake detection error: {e}")
|
296 |
+
st.error("Deepfake detection failed")
|
297 |
+
return None
|
298 |
+
except Exception as e:
|
299 |
+
logger.error(f"Unexpected error: {e}")
|
300 |
+
st.error("An unexpected error occurred")
|
301 |
+
return None
|
302 |
+
|
303 |
+
# Streamlit Integration Function
|
304 |
+
def nvidia_deepfake_detection_app():
|
305 |
+
st.header("π΅οΈ Deepfake Detection")
|
306 |
+
|
307 |
+
# Initialize detector
|
308 |
+
detector = NvidiaDeepfakeDetector()
|
309 |
+
|
310 |
+
# File uploader
|
311 |
+
uploaded_file = st.file_uploader(
|
312 |
+
"Upload an image",
|
313 |
+
type=["jpg", "jpeg", "png"],
|
314 |
+
key="deepfake_nvidia"
|
315 |
+
)
|
316 |
+
|
317 |
+
if uploaded_file is not None:
|
318 |
+
# Read image
|
319 |
+
image_bytes = uploaded_file.getvalue()
|
320 |
+
image = Image.open(BytesIO(image_bytes))
|
321 |
+
|
322 |
+
# Layout
|
323 |
+
col1, col2 = st.columns([2, 1])
|
324 |
+
|
325 |
+
with col1:
|
326 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
327 |
+
|
328 |
+
with col2:
|
329 |
+
st.write("### Detection Results")
|
330 |
+
|
331 |
+
# Detect deepfake
|
332 |
+
with st.spinner("Analyzing image..."):
|
333 |
+
result = detector.detect_deepfake(image_bytes)
|
334 |
+
|
335 |
+
# Process and display results
|
336 |
+
if result and 'data' in result and result['data']: # Check data list too
|
337 |
+
|
338 |
+
deepfake_data = result['data'][0] # Access the data list inside the 'data' key
|
339 |
+
is_deepfake = deepfake_data.get('isDeepfake', False) # Access isDeepfake from deepfake_data
|
340 |
+
confidence = deepfake_data.get('confidence', 0.0)
|
341 |
+
|
342 |
+
with col2:
|
343 |
+
# Confidence metrics
|
344 |
+
st.metric(
|
345 |
+
label="Deepfake Probability",
|
346 |
+
value=f"{confidence:.2f}%",
|
347 |
+
delta="High Risk" if confidence >= 70 else "Low Risk"
|
348 |
+
)
|
349 |
+
|
350 |
+
# Risk assessment
|
351 |
+
if is_deepfake or confidence > 90:
|
352 |
+
st.error("π¨ HIGH RISK: Likely a Deepfake")
|
353 |
+
elif confidence > 70:
|
354 |
+
st.warning("β οΈ MODERATE RISK: Potential Deepfake")
|
355 |
+
else:
|
356 |
+
st.success("β
LOW RISK: Likely Authentic")
|
357 |
+
else:
|
358 |
+
st.error("Unable to perform deepfake detection")
|
359 |
+
|
360 |
+
# Main execution
|
361 |
+
|
362 |
+
def detect_watermark(image, text):
|
363 |
+
try:
|
364 |
+
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
365 |
+
detected_text = pytesseract.image_to_string(gray_image)
|
366 |
+
return text.strip().lower() in detected_text.strip().lower()
|
367 |
+
except Exception as e:
|
368 |
+
st.error(f"Error in watermark detection: {str(e)}")
|
369 |
+
return False
|
370 |
+
|
371 |
+
def get_metadata(image):
|
372 |
+
exif_data = {}
|
373 |
+
info = image.getexif()
|
374 |
+
if info:
|
375 |
+
for tag, value in info.items():
|
376 |
+
decoded = ExifTags.TAGS.get(tag, tag)
|
377 |
+
exif_data[decoded] = value
|
378 |
+
return exif_data
|
379 |
+
|
380 |
+
def compare_metadata(meta1, meta2):
|
381 |
+
keys = set(meta1.keys()).union(set(meta2.keys()))
|
382 |
+
data = []
|
383 |
+
for key in keys:
|
384 |
+
value1 = meta1.get(key, "Not Available")
|
385 |
+
value2 = meta2.get(key, "Not Available")
|
386 |
+
if value1 != value2:
|
387 |
+
data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2})
|
388 |
+
if data:
|
389 |
+
df = pd.DataFrame(data)
|
390 |
+
return df
|
391 |
+
else:
|
392 |
+
return None
|
393 |
+
|
394 |
+
def detect_deepfake(image):
|
395 |
+
try:
|
396 |
+
analysis = DeepFace.analyze(img_path=np.array(image), actions=['emotion'], enforce_detection=False)
|
397 |
+
if analysis and 'emotion' in analysis:
|
398 |
+
return "Real Face Detected", 0.99
|
399 |
+
else:
|
400 |
+
return "No Face Detected", 0.0
|
401 |
+
except Exception as e:
|
402 |
+
st.error(f"Error in deepfake detection: {str(e)}")
|
403 |
+
return "Error", 0.0
|
404 |
+
|
405 |
+
def image_comparison_app():
|
406 |
+
st.header("π Image Analysis for Differences")
|
407 |
+
st.write("Upload two images to compare them and find differences.")
|
408 |
+
|
409 |
+
col1, col2 = st.columns(2)
|
410 |
+
with col1:
|
411 |
+
st.subheader("Original Image")
|
412 |
+
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1")
|
413 |
+
|
414 |
+
with col2:
|
415 |
+
st.subheader("Image to Compare")
|
416 |
+
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2")
|
417 |
+
|
418 |
+
if uploaded_file1 and uploaded_file2:
|
419 |
+
image1 = Image.open(uploaded_file1)
|
420 |
+
image2 = Image.open(uploaded_file2)
|
421 |
+
|
422 |
+
img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR)
|
423 |
+
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
|
424 |
+
|
425 |
+
if img1.shape != img2.shape:
|
426 |
+
st.warning("Images are not the same size. Resizing the second image to match the first.")
|
427 |
+
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
|
428 |
+
|
429 |
+
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
430 |
+
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
431 |
+
score, diff = ssim(gray1, gray2, full=True)
|
432 |
+
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
|
433 |
+
diff = (diff * 255).astype("uint8")
|
434 |
+
|
435 |
+
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
|
436 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
437 |
+
|
438 |
+
img1_diff = img1.copy()
|
439 |
+
img2_diff = img2.copy()
|
440 |
+
|
441 |
+
for cnt in contours:
|
442 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
443 |
+
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
444 |
+
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
445 |
+
|
446 |
+
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
|
447 |
+
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
|
448 |
+
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
|
449 |
+
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
|
450 |
+
|
451 |
+
st.write("## Results")
|
452 |
+
st.write("Differences are highlighted in red boxes.")
|
453 |
+
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
|
454 |
+
st.write("## Difference Image")
|
455 |
+
st.image(diff_display, caption="Difference Image", width=300)
|
456 |
+
st.write("## Thresholded Difference Image")
|
457 |
+
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
|
458 |
+
|
459 |
+
else:
|
460 |
+
st.info("Please upload both images.")
|
461 |
+
|
462 |
+
def image_comparison_and_watermarking_app():
|
463 |
+
st.header("π§ Watermark Adding and Detecting")
|
464 |
+
st.write("Upload an image to add a watermark, and detect if a watermark is present.")
|
465 |
+
|
466 |
+
def add_watermark(image, text):
|
467 |
+
txt = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
468 |
+
draw = ImageDraw.Draw(txt)
|
469 |
+
|
470 |
+
font_size = max(20, image.size[0] // 20)
|
471 |
+
try:
|
472 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
473 |
+
except IOError:
|
474 |
+
font = ImageFont.load_default() # Fallback if font not found
|
475 |
+
|
476 |
+
bbox = font.getbbox(text)
|
477 |
+
textwidth = bbox[2] - bbox[0]
|
478 |
+
textheight = bbox[3] - bbox[1]
|
479 |
+
|
480 |
+
x = image.size[0] - textwidth - 10
|
481 |
+
y = image.size[1] - textheight - 10
|
482 |
+
|
483 |
+
draw.text((x, y), text, font=font, fill=(255, 255, 255, 128))
|
484 |
+
watermarked = Image.alpha_composite(image.convert('RGBA'), txt)
|
485 |
+
|
486 |
+
return watermarked.convert('RGB')
|
487 |
+
|
488 |
+
uploaded_file = st.file_uploader("Choose an image", type=["png", "jpg", "jpeg"], key="wm1")
|
489 |
+
watermark_text = st.text_input("Enter watermark text:", value="Sample Watermark")
|
490 |
+
|
491 |
+
if uploaded_file:
|
492 |
+
image = Image.open(uploaded_file).convert("RGB")
|
493 |
+
st.image(image, caption="Original Image", width=300)
|
494 |
+
|
495 |
+
st.write("### Watermarked Image")
|
496 |
+
watermarked_image = add_watermark(image, watermark_text)
|
497 |
+
st.image(watermarked_image, caption="Watermarked Image", width=300)
|
498 |
+
|
499 |
+
st.write("### Watermark Detection")
|
500 |
+
if detect_watermark(watermarked_image, watermark_text):
|
501 |
+
st.success("Watermark detected in the image.")
|
502 |
+
else:
|
503 |
+
st.warning("Watermark not detected in the image.")
|
504 |
+
|
505 |
+
st.write("### Metadata")
|
506 |
+
metadata = get_metadata(image)
|
507 |
+
st.write(metadata if metadata else "No metadata available.")
|
508 |
+
|
509 |
+
else:
|
510 |
+
st.info("Please upload an image.")
|
511 |
+
|
512 |
+
def process_deepfake_detection_nvidia(image_bytes):
|
513 |
+
header_auth = f"Bearer {NVIDIA_API_KEY}"
|
514 |
+
invoke_url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection"
|
515 |
+
|
516 |
+
try:
|
517 |
+
if image_bytes is not None:
|
518 |
+
image_b64 = base64.b64encode(image_bytes).decode()
|
519 |
+
payload = {"input": [f"data:image/jpeg;base64,{image_b64}"]}
|
520 |
+
headers = {
|
521 |
+
"Content-Type": "application/json",
|
522 |
+
"Authorization": header_auth,
|
523 |
+
"Accept": "application/json",
|
524 |
+
}
|
525 |
+
|
526 |
+
response = requests.post(invoke_url, headers=headers, json= payload)
|
527 |
+
response.raise_for_status()
|
528 |
+
response_json = response.json()
|
529 |
+
return response_json # Return the result
|
530 |
+
except requests.exceptions.RequestException as e:
|
531 |
+
st.error(f"Error with NVIDIA API: {e}")
|
532 |
+
return None
|
533 |
+
|
534 |
+
def nvidia_deepfake_detection_app():
|
535 |
+
st.header("NVIDIA Deepfake Detection")
|
536 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], key="deepfake_nvidia")
|
537 |
+
|
538 |
+
if uploaded_file is not None:
|
539 |
+
image_bytes = uploaded_file.getvalue()
|
540 |
+
image = Image.open(BytesIO(image_bytes))
|
541 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
542 |
+
|
543 |
+
col1, col2 = st.columns([2, 1])
|
544 |
+
|
545 |
+
with col1:
|
546 |
+
# Display original image
|
547 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
548 |
+
|
549 |
+
with col2:
|
550 |
+
# Placeholder for detection results
|
551 |
+
st.write("### Detection Results")
|
552 |
+
|
553 |
+
# Perform deepfake detection
|
554 |
+
with st.spinner("Analyzing image for deepfake..."):
|
555 |
+
result = process_deepfake_detection_nvidia(image_bytes)
|
556 |
+
|
557 |
+
if result and 'data' in result and result['data']:
|
558 |
+
deepfake_data = result['data'][0]
|
559 |
+
|
560 |
+
# Deepfake confidence
|
561 |
+
is_deepfake = deepfake_data.get('isDeepfake', 0)
|
562 |
+
deepfake_confidence = is_deepfake * 100
|
563 |
+
|
564 |
+
# Face detection confidence
|
565 |
+
face_confidence = deepfake_data.get('confidence', 0) * 100
|
566 |
+
|
567 |
+
# Update the second column with detailed results
|
568 |
+
with col2:
|
569 |
+
# Deepfake Probability Card
|
570 |
+
st.markdown("""
|
571 |
+
<div style="background-color:#f0f2f6;padding:20px;border-radius:10px;">
|
572 |
+
<h3 style="color:#333;margin-bottom:15px;">Deepfake Analysis</h3>
|
573 |
+
""", unsafe_allow_html=True)
|
574 |
+
|
575 |
+
# Deepfake Confidence Metric
|
576 |
+
st.metric(
|
577 |
+
label="Deepfake Probability",
|
578 |
+
value=f"{deepfake_confidence:.1f}%",
|
579 |
+
delta="High Risk" if deepfake_confidence > 70 else "Low Risk"
|
580 |
+
)
|
581 |
+
|
582 |
+
# Face Detection Confidence Metric
|
583 |
+
st.metric(
|
584 |
+
label="Face Detection Confidence",
|
585 |
+
value=f"{face_confidence:.1f}%"
|
586 |
+
)
|
587 |
+
|
588 |
+
# Risk Assessment
|
589 |
+
if deepfake_confidence > 90:
|
590 |
+
st.error("π¨ HIGH RISK: Likely a Deepfake")
|
591 |
+
elif deepfake_confidence > 70:
|
592 |
+
st.warning("β οΈ MODERATE RISK: Potential Deepfake")
|
593 |
+
else:
|
594 |
+
st.success("β
LOW RISK: Likely Authentic")
|
595 |
+
|
596 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
597 |
+
|
598 |
+
# Detailed Explanation
|
599 |
+
st.markdown("### Detailed Analysis")
|
600 |
+
|
601 |
+
# Create expandable sections for more information
|
602 |
+
with st.expander("Deepfake Detection Explanation"):
|
603 |
+
st.write("""
|
604 |
+
- **Deepfake Probability**: Indicates the likelihood of the image being artificially generated.
|
605 |
+
- **Face Detection Confidence**: Measures the model's confidence in detecting a face in the image.
|
606 |
+
- High probabilities suggest potential manipulation.
|
607 |
+
""")
|
608 |
+
|
609 |
+
# Raw JSON for technical users
|
610 |
+
with st.expander("Technical Details"):
|
611 |
+
if result:
|
612 |
+
st.json(result)
|
613 |
+
|
614 |
+
else:
|
615 |
+
st.error("Unable to perform deepfake detection. Please try another image.")
|
616 |
+
|
617 |
+
else:
|
618 |
+
st.info("Please upload an image to perform deepfake detection.")
|
619 |
+
|
620 |
+
|
621 |
+
def document_comparison_tool():
|
622 |
+
st.header("π Document In-Depth Comparison")
|
623 |
+
st.markdown("Compare documents and detect changes with OCR highlighting.")
|
624 |
+
|
625 |
+
col1, col2 = st.columns(2)
|
626 |
+
|
627 |
+
with col1:
|
628 |
+
st.markdown("### Original Document")
|
629 |
+
original_file = st.file_uploader(
|
630 |
+
"Upload original document",
|
631 |
+
type=["pdf", "docx", "jpg", "jpeg", "png"],
|
632 |
+
key='doc_original_file',
|
633 |
+
help="Supported formats: PDF, DOCX, JPG, PNG"
|
634 |
+
)
|
635 |
+
|
636 |
+
with col2:
|
637 |
+
st.markdown("### Modified Document")
|
638 |
+
modified_file = st.file_uploader(
|
639 |
+
"Upload modified document",
|
640 |
+
type=["pdf", "docx", "jpg", "jpeg", "png"],
|
641 |
+
key='doc_modified_file',
|
642 |
+
help="Supported formats: PDF, DOCX, JPG, PNG"
|
643 |
+
)
|
644 |
+
|
645 |
+
if original_file and modified_file:
|
646 |
+
ocr_handler = NVIDIAOCRHandler()
|
647 |
+
|
648 |
+
original_file_path = save_uploaded_file(original_file)
|
649 |
+
modified_file_path = save_uploaded_file(modified_file)
|
650 |
+
|
651 |
+
original_ext = os.path.splitext(original_file.name)[1].lower()
|
652 |
+
modified_ext = os.path.splitext(modified_file.name)[1].lower()
|
653 |
+
|
654 |
+
if original_ext in ['.jpg', '.jpeg', '.png']:
|
655 |
+
original_text = ocr_handler.process_image(original_file_path)
|
656 |
+
elif original_ext == '.pdf':
|
657 |
+
original_text = extract_text_pdf(original_file_path)
|
658 |
+
else:
|
659 |
+
original_text = extract_text_word(original_file_path)
|
660 |
+
|
661 |
+
if modified_ext in ['.jpg', '.jpeg', '.png']:
|
662 |
+
modified_text = ocr_handler.process_image(modified_file_path)
|
663 |
+
elif modified_ext == '.pdf':
|
664 |
+
modified_text = extract_text_pdf(modified_file_path)
|
665 |
+
else:
|
666 |
+
modified_text = extract_text_word(modified_file_path)
|
667 |
+
|
668 |
+
similarity_score = calculate_similarity(original_text, modified_text)
|
669 |
+
|
670 |
+
st.markdown("### π Analysis Results")
|
671 |
+
metrics_col1, metrics_col2 = st.columns(2)
|
672 |
+
with metrics_col1:
|
673 |
+
st.metric("Similarity Score", f"{similarity_score:.2%}")
|
674 |
+
with metrics_col2:
|
675 |
+
st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No")
|
676 |
+
|
677 |
+
st.markdown("### π Detailed Comparison")
|
678 |
+
diff_html = compare_texts(original_text, modified_text)
|
679 |
+
st.components.v1.html(diff_html, height=600, scrolling=True)
|
680 |
+
|
681 |
+
st.markdown("### πΎ Download Results")
|
682 |
+
if st.button("Generate Report"):
|
683 |
+
st.success("Report generated successfully!")
|
684 |
+
st.download_button(
|
685 |
+
label="Download Report",
|
686 |
+
data=diff_html,
|
687 |
+
file_name="comparison_report.html",
|
688 |
+
mime="text/html"
|
689 |
+
)
|
690 |
+
|
691 |
+
else:
|
692 |
+
st.info("Please upload both documents to begin comparison.")
|
693 |
+
|
694 |
+
def main():
|
695 |
+
st.write("""
|
696 |
+
Welcome to the Centurion Analysis Tool! Use the tabs below to navigate through the different functionalities.
|
697 |
+
""")
|
698 |
+
|
699 |
+
tabs = st.tabs([
|
700 |
+
"Image Comparison",
|
701 |
+
"Watermark Adding & Detecting",
|
702 |
+
"Deepfake Detection (NVIDIA)",
|
703 |
+
"Document Comparison Tool"
|
704 |
+
])
|
705 |
+
|
706 |
+
with tabs[0]:
|
707 |
+
image_comparison_app()
|
708 |
+
|
709 |
+
with tabs[1]:
|
710 |
+
image_comparison_and_watermarking_app()
|
711 |
+
|
712 |
+
with tabs[2]:
|
713 |
+
nvidia_deepfake_detection_app()
|
714 |
+
|
715 |
+
with tabs[3]:
|
716 |
+
document_comparison_tool()
|
717 |
+
|
718 |
+
if __name__ == "__main__":
|
719 |
+
main()
|