Spaces:
Sleeping
Sleeping
File size: 24,785 Bytes
3052559 77e5381 9539552 3052559 9539552 3052559 d9a04da 3052559 d0af94f 3052559 d0af94f 3052559 d9a04da 54544c4 d9a04da 54544c4 3708db4 a7ad512 3052559 a7ad512 3052559 a7ad512 3052559 a7ad512 3052559 a7ad512 b0dc4d8 feae4e9 b0dc4d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import streamlit as st
from PIL import Image, ImageDraw, ImageFont, ExifTags
import cv2
import numpy as np
from skimage.metrics import structural_similarity as ssim
import pandas as pd
import fitz # PyMuPDF
import docx
from difflib import HtmlDiff, SequenceMatcher
import os
import uuid
import logging
import requests
import zipfile
from typing import Union, Dict, Any
import time
import base64
import io
from io import BytesIO
icon_url = "https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png"
response = requests.get(icon_url)
icon_image = Image.open(BytesIO(response.content))
# Page configuration
st.set_page_config(
page_title="DeepFake Detection",
page_icon=icon_image
# initial_sidebar_state="expanded"
)
# Custom CSS
st.html(
"""
<style>
.title-container {
display: flex;
align-items: center;
margin-bottom: 20px; /* Add margin for spacing */
}
.title-icon {
width: 50px;
height: 50px;
margin-right: 10px; /* Add margin between icon and title */
}
.title-text {
font-size: 36px; /* Adjust font size as needed */
font-weight: bold;
}
</style>
""",
)
st.markdown(
f"""
<div class="title-container">
<img class="title-icon" src="{icon_url}" alt="Icon">
<div class="title-text">Centurion </div>
</div>
""",
unsafe_allow_html=True
)
st.markdown("---")
# Constants
UPLOAD_DIR = "uploaded_files"
NVIDIA_API_KEY = "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" # Store API key securely"
# Create upload directory if it doesn't exist
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main():
# Title and icon using HTML for better control
st.markdown(
"""
<div class="title-container">
<img class="title-icon" src="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png">
</div>
""",
unsafe_allow_html=True,
)
# Create tabs for different functionalities
tabs = st.tabs(["Image Comparison", "Image Comparison with Watermarking", "Document Comparison Tool"])
with tabs[0]:
image_comparison()
with tabs[1]:
image_comparison_and_watermarking()
with tabs[2]:
document_comparison_tool()
def image_comparison():
st.header("Image Comparison")
st.write("""
Upload two images to compare them and find differences.
""")
# Upload images
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1")
with col2:
st.subheader("Image to Compare")
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2")
if uploaded_file1 is not None and uploaded_file2 is not None:
# Read images
image1 = Image.open(uploaded_file1)
image2 = Image.open(uploaded_file2)
# Convert images to OpenCV format
img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR)
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
# Resize images to the same size if necessary
if img1.shape != img2.shape:
st.warning("Images are not the same size. Resizing the second image to match the first.")
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
# Convert to grayscale
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# Compute SSIM between two images
score, diff = ssim(gray1, gray2, full=True)
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
diff = (diff * 255).astype("uint8")
# Threshold the difference image
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# Find contours of the differences
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Create copies of the images to draw on
img1_diff = img1.copy()
img2_diff = img2.copy()
# Draw rectangles around differences
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
# Convert images back to RGB for displaying with Streamlit
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
# Display images
st.write("## Results")
st.write("Differences are highlighted in red boxes.")
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
st.write("## Difference Image")
st.image(diff_display, caption="Difference Image", width=300)
st.write("## Thresholded Difference Image")
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
else:
st.info("Please upload both images.")
def image_comparison_and_watermarking():
st.header("Image Comparison and Watermarking")
st.write("""
Upload two images to compare them, find differences, add a watermark, and compare metadata.
""")
# Upload images
st.subheader("Upload Images")
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="wm1")
with col2:
st.subheader("Image to Compare")
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="wm2")
watermark_text = st.text_input("Enter watermark text (optional):", value="")
if uploaded_file1 is not None and uploaded_file2 is not None:
# Read images
image1 = Image.open(uploaded_file1).convert("RGB")
image2 = Image.open(uploaded_file2).convert("RGB")
# Display original images
st.write("### Uploaded Images")
st.image([image1, image2], caption=["Original Image", "Image to Compare"], width=300)
# Add watermark if text is provided
if watermark_text:
st.write("### Watermarked Original Image")
image1_watermarked = add_watermark(image1, watermark_text)
st.image(image1_watermarked, caption="Original Image with Watermark", width=300)
else:
image1_watermarked = image1.copy()
# Convert images to OpenCV format
img1 = cv2.cvtColor(np.array(image1_watermarked), cv2.COLOR_RGB2BGR)
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
# Resize images to the same size if necessary
if img1.shape != img2.shape:
st.warning("Images are not the same size. Resizing the second image to match the first.")
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
# Convert to grayscale
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# Compute SSIM between two images
score, diff = ssim(gray1, gray2, full=True)
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
diff = (diff * 255).astype("uint8")
# Threshold the difference image
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# Find contours of the differences
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Create copies of the images to draw on
img1_diff = img1.copy()
img2_diff = img2.copy()
# Draw rectangles around differences
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
# Convert images back to RGB for displaying with Streamlit
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
# Display images with differences highlighted
st.write("## Results")
st.write("Differences are highlighted in red boxes.")
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
st.write("## Difference Image")
st.image(diff_display, caption="Difference Image", width=300)
st.write("## Thresholded Difference Image")
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
# Metadata comparison
st.write("## Metadata Comparison")
metadata1 = get_metadata(image1)
metadata2 = get_metadata(image2)
if metadata1 and metadata2:
metadata_df = compare_metadata(metadata1, metadata2)
if metadata_df is not None:
st.write("### Metadata Differences")
st.dataframe(metadata_df)
else:
st.write("No differences in metadata.")
else:
st.write("Metadata not available for one or both images.")
else:
st.info("Please upload both images.")
def add_watermark(image, text):
# Create a blank image for the text with transparent background
txt = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt)
# Choose a font and size
font_size = max(20, image.size[0] // 20)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default()
# Calculate text bounding box
bbox = font.getbbox(text)
textwidth = bbox[2] - bbox[0]
textheight = bbox[3] - bbox[1]
# Position the text at the bottom right
x = image.size[0] - textwidth - 10
y = image.size[1] - textheight - 10
# Draw text with semi-transparent fill
draw.text((x, y), text, font=font, fill=(255, 255, 255, 128))
# Combine the original image with the text overlay
watermarked = Image.alpha_composite(image.convert('RGBA'), txt)
return watermarked.convert('RGB')
def get_metadata(image):
exif_data = {}
info = image.getexif()
if info:
for tag, value in info.items():
decoded = ExifTags.TAGS.get(tag, tag)
exif_data[decoded] = value
return exif_data
def compare_metadata(meta1, meta2):
keys = set(meta1.keys()).union(set(meta2.keys()))
data = []
for key in keys:
value1 = meta1.get(key, "Not Available")
value2 = meta2.get(key, "Not Available")
if value1 != value2:
data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2})
if data:
df = pd.DataFrame(data)
return df
else:
return None
def document_comparison_tool():
st.header("π Advanced Document Comparison Tool")
st.markdown("### Compare documents and detect changes with AI-powered OCR")
# Sidebar settings
with st.sidebar:
st.header("βΉοΈ About")
st.markdown("""
This tool allows you to:
- Compare PDF and Word documents
- Process images using NVIDIA's OCR
- Detect and highlight changes
- Generate similarity metrics
""")
st.header("π οΈ Settings")
show_metadata = st.checkbox("Show Metadata", value=True, key='doc_show_metadata')
show_detailed_diff = st.checkbox("Show Detailed Differences", value=True, key='doc_show_detailed_diff')
# Main content
col1, col2 = st.columns(2)
with col1:
st.markdown("### Original Document")
original_file = st.file_uploader(
"Upload original document",
type=["pdf", "docx", "jpg", "jpeg", "png"],
key='doc_original_file',
help="Supported formats: PDF, DOCX, JPG, PNG"
)
with col2:
st.markdown("### Modified Document")
modified_file = st.file_uploader(
"Upload modified document",
type=["pdf", "docx", "jpg", "jpeg", "png"],
key='doc_modified_file',
help="Supported formats: PDF, DOCX, JPG, PNG"
)
if original_file and modified_file:
try:
with st.spinner("Processing documents..."):
# Initialize OCR handler
ocr_handler = NVIDIAOCRHandler()
# Process files
original_file_path = save_uploaded_file(original_file)
modified_file_path = save_uploaded_file(modified_file)
# Extract text based on file type
original_ext = os.path.splitext(original_file.name)[1].lower()
modified_ext = os.path.splitext(modified_file.name)[1].lower()
# Process original document
if original_ext in ['.jpg', '.jpeg', '.png']:
original_result = ocr_handler.process_image(original_file_path, f"{UPLOAD_DIR}/original_ocr")
with open(f"{UPLOAD_DIR}/original_ocr/text.txt", "r") as f:
original_text = f.read()
elif original_ext == '.pdf':
original_text = extract_text_pdf(original_file_path)
else:
original_text = extract_text_word(original_file_path)
# Process modified document
if modified_ext in ['.jpg', '.jpeg', '.png']:
modified_result = ocr_handler.process_image(modified_file_path, f"{UPLOAD_DIR}/modified_ocr")
with open(f"{UPLOAD_DIR}/modified_ocr/text.txt", "r") as f:
modified_text = f.read()
elif modified_ext == '.pdf':
modified_text = extract_text_pdf(modified_file_path)
else:
modified_text = extract_text_word(modified_file_path)
# Calculate similarity
similarity_score = calculate_similarity(original_text, modified_text)
# Display results
st.markdown("### π Analysis Results")
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
with metrics_col1:
st.metric("Similarity Score", f"{similarity_score:.2%}")
with metrics_col2:
st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No")
with metrics_col3:
st.metric("Processing Status", "Complete β
")
if show_detailed_diff:
st.markdown("### π Detailed Comparison")
diff_html = compare_texts(original_text, modified_text)
st.components.v1.html(diff_html, height=600, scrolling=True)
# Download results
st.markdown("### πΎ Download Results")
if st.button("Generate Report"):
with st.spinner("Generating report..."):
# Simulate report generation
time.sleep(2)
st.success("Report generated successfully!")
st.download_button(
label="Download Report",
data=diff_html,
file_name="comparison_report.html",
mime="text/html"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
logger.error(f"Error processing documents: {str(e)}")
else:
st.info("π Please upload both documents to begin comparison")
class NVIDIAOCRHandler:
def __init__(self):
self.api_key = NVIDIA_API_KEY
self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet"
self.assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets"
self.header_auth = f"Bearer {self.api_key}"
def upload_asset(self, input_data: bytes, description: str) -> uuid.UUID:
try:
with st.spinner("Uploading document to NVIDIA OCR service..."):
headers = {
"Authorization": self.header_auth,
"Content-Type": "application/json",
"accept": "application/json",
}
s3_headers = {
"x-amz-meta-nvcf-asset-description": description,
"content-type": "image/jpeg",
}
payload = {"contentType": "image/jpeg", "description": description}
response = requests.post(self.assets_url, headers=headers, json=payload, timeout=30)
response.raise_for_status()
upload_data = response.json()
response = requests.put(
upload_data["uploadUrl"],
data=input_data,
headers=s3_headers,
timeout=300,
)
response.raise_for_status()
return uuid.UUID(upload_data["assetId"])
except Exception as e:
st.error(f"Error uploading asset: {str(e)}")
raise
def process_image(self, image_path: str, output_dir: str) -> Dict[str, Any]:
try:
with st.spinner("Processing document with OCR..."):
with open(image_path, "rb") as f:
asset_id = self.upload_asset(f.read(), "Input Image")
inputs = {"image": f"{asset_id}", "render_label": False}
asset_list = f"{asset_id}"
headers = {
"Content-Type": "application/json",
"NVCF-INPUT-ASSET-REFERENCES": asset_list,
"NVCF-FUNCTION-ASSET-IDS": asset_list,
"Authorization": self.header_auth,
}
response = requests.post(self.nvai_url, headers=headers, json=inputs)
response.raise_for_status()
zip_path = f"{output_dir}.zip"
with open(zip_path, "wb") as out:
out.write(response.content)
with zipfile.ZipFile(zip_path, "r") as z:
z.extractall(output_dir)
os.remove(zip_path)
return {
"status": "success",
"output_directory": output_dir,
"files": os.listdir(output_dir)
}
except Exception as e:
st.error(f"Error processing image: {str(e)}")
raise
def save_uploaded_file(uploaded_file):
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
return file_path
def extract_text_pdf(file_path):
doc = fitz.open(file_path)
text = ""
for page in doc:
text += page.get_text()
return text
def extract_text_word(file_path):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
def compare_texts(text1, text2):
differ = HtmlDiff()
return differ.make_file(
text1.splitlines(),
text2.splitlines(),
fromdesc="Original",
todesc="Modified",
context=True,
numlines=2
)
def draw_bounding_box(image, vertices, confidence, is_deepfake):
img = np.array(image)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Extract coordinates
x1, y1 = int(vertices[0]['x']), int(vertices[0]['y'])
x2, y2 = int(vertices[1]['x']), int(vertices[1]['y'])
# Calculate confidence percentages
deepfake_conf = is_deepfake * 100
bbox_conf = confidence * 100
# Choose color based on deepfake confidence (red for high confidence)
color = (0, 0, 255) if deepfake_conf > 70 else (0, 255, 0)
# Draw bounding box
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
# Add text with confidence scores
label = f"Deepfake ({deepfake_conf:.1f}%), Face ({bbox_conf:.1f}%)"
cv2.putText(img, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Convert back to RGB for Streamlit
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def process_image(image_bytes):
"""Process image through NVIDIA's deepfake detection API"""
image_b64 = base64.b64encode(image_bytes).decode()
headers = {
"Authorization": f"Bearer {NVIDIA_API_KEY}",
"Content-Type": "application/json",
"Accept": "application/json"
}
payload = {
"input": [f"data:image/png;base64,{image_b64}"]
}
try:
response = requests.post(
"https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection",
headers=headers,
json=payload
)
response.raise_for_status()
return response.json()
except Exception as e:
st.error(f"Error processing image: {str(e)}")
return None
def main():
st.title("Deepfake Detection")
st.markdown("""
<div style="background-color: #f9f9f9; padding: 10px; border-radius: 5px; border: 1px solid #ddd;">
<h3 style="color: #ff6347;">NOTE:</h3>
<p style="font-size: 14px; color: #333;">
<span style="font-size: 16px; font-weight: bold;">In case</span> there would be no changes detected, the space would not show anything as a result, returning back empty results. For this POC.
</p>
</div>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image_bytes = uploaded_file.getvalue()
image = Image.open(io.BytesIO(image_bytes))
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
st.image(image, use_container_width=True)
# Process image
with st.spinner("Analyzing image..."):
result = process_image(image_bytes)
if result and 'data' in result:
data = result['data'][0]
if 'bounding_boxes' in data:
for box in data['bounding_boxes']:
# Draw bounding box on image
annotated_image = draw_bounding_box(
image,
box['vertices'],
box['bbox_confidence'],
box['is_deepfake']
)
with col2:
st.subheader("Analysis Result")
st.image(annotated_image, use_container_width=True)
# Display confidence metrics
deepfake_conf = box['is_deepfake'] * 100
bbox_conf = box['bbox_confidence'] * 100
st.write("### Detection Confidence")
col3, col4 = st.columns(2)
with col3:
st.metric("Deepfake Confidence", f"{deepfake_conf:.1f}%")
st.progress(deepfake_conf/100)
with col4:
st.metric("Face Detection Confidence", f"{bbox_conf:.1f}%")
st.progress(bbox_conf/100)
if deepfake_conf > 90:
st.error("β οΈ High probability of deepfake detected!")
elif deepfake_conf > 70:
st.warning("β οΈ Moderate probability of deepfake detected!")
else:
st.success("β
Low probability of deepfake")
# Display raw JSON data in expander
with st.expander("View Raw JSON Response"):
st.json(result)
else:
st.warning("No faces detected in the image")
def calculate_similarity(text1, text2):
matcher = SequenceMatcher(None, text1, text2)
return matcher.ratio()
if __name__ == "__main__":
main()
|