Spaces:
Running
Running
import streamlit as st | |
from PIL import Image, ImageDraw, ImageFont, ExifTags | |
import cv2 | |
import numpy as np | |
from skimage.metrics import structural_similarity as ssim | |
import pandas as pd | |
import fitz # PyMuPDF | |
import docx | |
from difflib import HtmlDiff, SequenceMatcher | |
import os | |
import uuid | |
import logging | |
import requests | |
import zipfile | |
from typing import Union, Dict, Any | |
import time | |
import base64 | |
import io | |
from io import BytesIO | |
icon_url = "https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png" | |
response = requests.get(icon_url) | |
icon_image = Image.open(BytesIO(response.content)) | |
# Page configuration | |
st.set_page_config( | |
page_title="Centurion Analysis Tool", | |
page_icon=icon_image, | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS | |
st.html( | |
""" | |
<style> | |
.title-container { | |
display: flex; | |
align-items: center; | |
margin-bottom: 20px; /* Add margin for spacing */ | |
} | |
.title-icon { | |
width: 50px; | |
height: 50px; | |
margin-right: 10px; /* Add margin between icon and title */ | |
} | |
.title-text { | |
font-size: 36px; /* Adjust font size as needed */ | |
font-weight: bold; | |
} | |
</style> | |
""", | |
) | |
st.markdown( | |
f""" | |
<div class="title-container"> | |
<img class="title-icon" src="{icon_url}" alt="Icon"> | |
<div class="title-text">Centurion Analysis Tool</div> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
st.write("Welcome to the Centurion Analysis Tool! Use the tabs above to navigate.") | |
# Constants | |
UPLOAD_DIR = "uploaded_files" | |
NVIDIA_API_KEY = "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" | |
# Create upload directory if it doesn't exist | |
if not os.path.exists(UPLOAD_DIR): | |
os.makedirs(UPLOAD_DIR) | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def main(): | |
# Title and icon using HTML for better control | |
st.markdown( | |
""" | |
<div class="title-container"> | |
<img class="title-icon" src="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png"> | |
<span class="title-text">CENTURION</span> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Create tabs for different functionalities | |
tabs = st.tabs(["Image Comparison", "Image Comparison with Watermarking", "Document Comparison Tool"]) | |
with tabs[0]: | |
image_comparison() | |
with tabs[1]: | |
image_comparison_and_watermarking() | |
with tabs[2]: | |
document_comparison_tool() | |
def image_comparison(): | |
st.header("Image Comparison") | |
st.write(""" | |
Upload two images to compare them and find differences. | |
""") | |
# Upload images | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Original Image") | |
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1") | |
with col2: | |
st.subheader("Image to Compare") | |
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2") | |
if uploaded_file1 is not None and uploaded_file2 is not None: | |
# Read images | |
image1 = Image.open(uploaded_file1) | |
image2 = Image.open(uploaded_file2) | |
# Convert images to OpenCV format | |
img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR) | |
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR) | |
# Resize images to the same size if necessary | |
if img1.shape != img2.shape: | |
st.warning("Images are not the same size. Resizing the second image to match the first.") | |
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) | |
# Convert to grayscale | |
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) | |
# Compute SSIM between two images | |
score, diff = ssim(gray1, gray2, full=True) | |
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**") | |
diff = (diff * 255).astype("uint8") | |
# Threshold the difference image | |
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] | |
# Find contours of the differences | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# Create copies of the images to draw on | |
img1_diff = img1.copy() | |
img2_diff = img2.copy() | |
# Draw rectangles around differences | |
for cnt in contours: | |
x, y, w, h = cv2.boundingRect(cnt) | |
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
# Convert images back to RGB for displaying with Streamlit | |
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB) | |
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB) | |
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB) | |
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB) | |
# Display images | |
st.write("## Results") | |
st.write("Differences are highlighted in red boxes.") | |
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300) | |
st.write("## Difference Image") | |
st.image(diff_display, caption="Difference Image", width=300) | |
st.write("## Thresholded Difference Image") | |
st.image(thresh_display, caption="Thresholded Difference Image", width=300) | |
else: | |
st.info("Please upload both images.") | |
def image_comparison_and_watermarking(): | |
st.header("Image Comparison and Watermarking") | |
st.write(""" | |
Upload two images to compare them, find differences, add a watermark, and compare metadata. | |
""") | |
# Upload images | |
st.subheader("Upload Images") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Original Image") | |
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="wm1") | |
with col2: | |
st.subheader("Image to Compare") | |
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="wm2") | |
watermark_text = st.text_input("Enter watermark text (optional):", value="") | |
if uploaded_file1 is not None and uploaded_file2 is not None: | |
# Read images | |
image1 = Image.open(uploaded_file1).convert("RGB") | |
image2 = Image.open(uploaded_file2).convert("RGB") | |
# Display original images | |
st.write("### Uploaded Images") | |
st.image([image1, image2], caption=["Original Image", "Image to Compare"], width=300) | |
# Add watermark if text is provided | |
if watermark_text: | |
st.write("### Watermarked Original Image") | |
image1_watermarked = add_watermark(image1, watermark_text) | |
st.image(image1_watermarked, caption="Original Image with Watermark", width=300) | |
else: | |
image1_watermarked = image1.copy() | |
# Convert images to OpenCV format | |
img1 = cv2.cvtColor(np.array(image1_watermarked), cv2.COLOR_RGB2BGR) | |
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR) | |
# Resize images to the same size if necessary | |
if img1.shape != img2.shape: | |
st.warning("Images are not the same size. Resizing the second image to match the first.") | |
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) | |
# Convert to grayscale | |
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) | |
# Compute SSIM between two images | |
score, diff = ssim(gray1, gray2, full=True) | |
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**") | |
diff = (diff * 255).astype("uint8") | |
# Threshold the difference image | |
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] | |
# Find contours of the differences | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# Create copies of the images to draw on | |
img1_diff = img1.copy() | |
img2_diff = img2.copy() | |
# Draw rectangles around differences | |
for cnt in contours: | |
x, y, w, h = cv2.boundingRect(cnt) | |
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
# Convert images back to RGB for displaying with Streamlit | |
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB) | |
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB) | |
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB) | |
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB) | |
# Display images with differences highlighted | |
st.write("## Results") | |
st.write("Differences are highlighted in red boxes.") | |
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300) | |
st.write("## Difference Image") | |
st.image(diff_display, caption="Difference Image", width=300) | |
st.write("## Thresholded Difference Image") | |
st.image(thresh_display, caption="Thresholded Difference Image", width=300) | |
# Metadata comparison | |
st.write("## Metadata Comparison") | |
metadata1 = get_metadata(image1) | |
metadata2 = get_metadata(image2) | |
if metadata1 and metadata2: | |
metadata_df = compare_metadata(metadata1, metadata2) | |
if metadata_df is not None: | |
st.write("### Metadata Differences") | |
st.dataframe(metadata_df) | |
else: | |
st.write("No differences in metadata.") | |
else: | |
st.write("Metadata not available for one or both images.") | |
else: | |
st.info("Please upload both images.") | |
def add_watermark(image, text): | |
# Create a blank image for the text with transparent background | |
txt = Image.new('RGBA', image.size, (255, 255, 255, 0)) | |
draw = ImageDraw.Draw(txt) | |
# Choose a font and size | |
font_size = max(20, image.size[0] // 20) | |
try: | |
font = ImageFont.truetype("arial.ttf", font_size) | |
except IOError: | |
font = ImageFont.load_default() | |
# Calculate text bounding box | |
bbox = font.getbbox(text) | |
textwidth = bbox[2] - bbox[0] | |
textheight = bbox[3] - bbox[1] | |
# Position the text at the bottom right | |
x = image.size[0] - textwidth - 10 | |
y = image.size[1] - textheight - 10 | |
# Draw text with semi-transparent fill | |
draw.text((x, y), text, font=font, fill=(255, 255, 255, 128)) | |
# Combine the original image with the text overlay | |
watermarked = Image.alpha_composite(image.convert('RGBA'), txt) | |
return watermarked.convert('RGB') | |
def get_metadata(image): | |
exif_data = {} | |
info = image.getexif() | |
if info: | |
for tag, value in info.items(): | |
decoded = ExifTags.TAGS.get(tag, tag) | |
exif_data[decoded] = value | |
return exif_data | |
def compare_metadata(meta1, meta2): | |
keys = set(meta1.keys()).union(set(meta2.keys())) | |
data = [] | |
for key in keys: | |
value1 = meta1.get(key, "Not Available") | |
value2 = meta2.get(key, "Not Available") | |
if value1 != value2: | |
data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2}) | |
if data: | |
df = pd.DataFrame(data) | |
return df | |
else: | |
return None | |
def document_comparison_tool(): | |
st.header("📄 Advanced Document Comparison Tool") | |
st.markdown("### Compare documents and detect changes with AI-powered OCR") | |
# Sidebar settings | |
with st.sidebar: | |
st.header("ℹ️ About") | |
st.markdown(""" | |
This tool allows you to: | |
- Compare PDF and Word documents | |
- Process images using NVIDIA's OCR | |
- Detect and highlight changes | |
- Generate similarity metrics | |
""") | |
st.header("🛠️ Settings") | |
show_metadata = st.checkbox("Show Metadata", value=True, key='doc_show_metadata') | |
show_detailed_diff = st.checkbox("Show Detailed Differences", value=True, key='doc_show_detailed_diff') | |
# Main content | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("### Original Document") | |
original_file = st.file_uploader( | |
"Upload original document", | |
type=["pdf", "docx", "jpg", "jpeg", "png"], | |
key='doc_original_file', | |
help="Supported formats: PDF, DOCX, JPG, PNG" | |
) | |
with col2: | |
st.markdown("### Modified Document") | |
modified_file = st.file_uploader( | |
"Upload modified document", | |
type=["pdf", "docx", "jpg", "jpeg", "png"], | |
key='doc_modified_file', | |
help="Supported formats: PDF, DOCX, JPG, PNG" | |
) | |
if original_file and modified_file: | |
try: | |
with st.spinner("Processing documents..."): | |
# Initialize OCR handler | |
ocr_handler = NVIDIAOCRHandler() | |
# Process files | |
original_file_path = save_uploaded_file(original_file) | |
modified_file_path = save_uploaded_file(modified_file) | |
# Extract text based on file type | |
original_ext = os.path.splitext(original_file.name)[1].lower() | |
modified_ext = os.path.splitext(modified_file.name)[1].lower() | |
# Process original document | |
if original_ext in ['.jpg', '.jpeg', '.png']: | |
original_result = ocr_handler.process_image(original_file_path, f"{UPLOAD_DIR}/original_ocr") | |
with open(f"{UPLOAD_DIR}/original_ocr/text.txt", "r") as f: | |
original_text = f.read() | |
elif original_ext == '.pdf': | |
original_text = extract_text_pdf(original_file_path) | |
else: | |
original_text = extract_text_word(original_file_path) | |
# Process modified document | |
if modified_ext in ['.jpg', '.jpeg', '.png']: | |
modified_result = ocr_handler.process_image(modified_file_path, f"{UPLOAD_DIR}/modified_ocr") | |
with open(f"{UPLOAD_DIR}/modified_ocr/text.txt", "r") as f: | |
modified_text = f.read() | |
elif modified_ext == '.pdf': | |
modified_text = extract_text_pdf(modified_file_path) | |
else: | |
modified_text = extract_text_word(modified_file_path) | |
# Calculate similarity | |
similarity_score = calculate_similarity(original_text, modified_text) | |
# Display results | |
st.markdown("### 📊 Analysis Results") | |
metrics_col1, metrics_col2, metrics_col3 = st.columns(3) | |
with metrics_col1: | |
st.metric("Similarity Score", f"{similarity_score:.2%}") | |
with metrics_col2: | |
st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No") | |
with metrics_col3: | |
st.metric("Processing Status", "Complete ✅") | |
if show_detailed_diff: | |
st.markdown("### 🔍 Detailed Comparison") | |
diff_html = compare_texts(original_text, modified_text) | |
st.components.v1.html(diff_html, height=600, scrolling=True) | |
# Download results | |
st.markdown("### 💾 Download Results") | |
if st.button("Generate Report"): | |
with st.spinner("Generating report..."): | |
# Simulate report generation | |
time.sleep(2) | |
st.success("Report generated successfully!") | |
st.download_button( | |
label="Download Report", | |
data=diff_html, | |
file_name="comparison_report.html", | |
mime="text/html" | |
) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
logger.error(f"Error processing documents: {str(e)}") | |
else: | |
st.info("👆 Please upload both documents to begin comparison") | |
class NVIDIAOCRHandler: | |
def __init__(self): | |
self.api_key = NVIDIA_API_KEY | |
self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet" | |
self.assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets" | |
self.header_auth = f"Bearer {self.api_key}" | |
def upload_asset(self, input_data: bytes, description: str) -> uuid.UUID: | |
try: | |
with st.spinner("Uploading document to NVIDIA OCR service..."): | |
headers = { | |
"Authorization": self.header_auth, | |
"Content-Type": "application/json", | |
"accept": "application/json", | |
} | |
s3_headers = { | |
"x-amz-meta-nvcf-asset-description": description, | |
"content-type": "image/jpeg", | |
} | |
payload = {"contentType": "image/jpeg", "description": description} | |
response = requests.post(self.assets_url, headers=headers, json=payload, timeout=30) | |
response.raise_for_status() | |
upload_data = response.json() | |
response = requests.put( | |
upload_data["uploadUrl"], | |
data=input_data, | |
headers=s3_headers, | |
timeout=300, | |
) | |
response.raise_for_status() | |
return uuid.UUID(upload_data["assetId"]) | |
except Exception as e: | |
st.error(f"Error uploading asset: {str(e)}") | |
raise | |
def process_image(self, image_path: str, output_dir: str) -> Dict[str, Any]: | |
try: | |
with st.spinner("Processing document with OCR..."): | |
with open(image_path, "rb") as f: | |
asset_id = self.upload_asset(f.read(), "Input Image") | |
inputs = {"image": f"{asset_id}", "render_label": False} | |
asset_list = f"{asset_id}" | |
headers = { | |
"Content-Type": "application/json", | |
"NVCF-INPUT-ASSET-REFERENCES": asset_list, | |
"NVCF-FUNCTION-ASSET-IDS": asset_list, | |
"Authorization": self.header_auth, | |
} | |
response = requests.post(self.nvai_url, headers=headers, json=inputs) | |
response.raise_for_status() | |
zip_path = f"{output_dir}.zip" | |
with open(zip_path, "wb") as out: | |
out.write(response.content) | |
with zipfile.ZipFile(zip_path, "r") as z: | |
z.extractall(output_dir) | |
os.remove(zip_path) | |
return { | |
"status": "success", | |
"output_directory": output_dir, | |
"files": os.listdir(output_dir) | |
} | |
except Exception as e: | |
st.error(f"Error processing image: {str(e)}") | |
raise | |
def save_uploaded_file(uploaded_file): | |
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
return file_path | |
def extract_text_pdf(file_path): | |
doc = fitz.open(file_path) | |
text = "" | |
for page in doc: | |
text += page.get_text() | |
return text | |
def extract_text_word(file_path): | |
doc = docx.Document(file_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
return text | |
def compare_texts(text1, text2): | |
differ = HtmlDiff() | |
return differ.make_file( | |
text1.splitlines(), | |
text2.splitlines(), | |
fromdesc="Original", | |
todesc="Modified", | |
context=True, | |
numlines=2 | |
) | |
def draw_bounding_box(image, vertices, confidence, is_deepfake): | |
img = np.array(image) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
# Extract coordinates | |
x1, y1 = int(vertices[0]['x']), int(vertices[0]['y']) | |
x2, y2 = int(vertices[1]['x']), int(vertices[1]['y']) | |
# Calculate confidence percentages | |
deepfake_conf = is_deepfake * 100 | |
bbox_conf = confidence * 100 | |
# Choose color based on deepfake confidence (red for high confidence) | |
color = (0, 0, 255) if deepfake_conf > 70 else (0, 255, 0) | |
# Draw bounding box | |
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) | |
# Add text with confidence scores | |
label = f"Deepfake ({deepfake_conf:.1f}%), Face ({bbox_conf:.1f}%)" | |
cv2.putText(img, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
# Convert back to RGB for Streamlit | |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
def process_image(image_bytes): | |
"""Process image through NVIDIA's deepfake detection API""" | |
image_b64 = base64.b64encode(image_bytes).decode() | |
headers = { | |
"Authorization": f"Bearer {NVIDIA_API_KEY}", | |
"Content-Type": "application/json", | |
"Accept": "application/json" | |
} | |
payload = { | |
"input": [f"data:image/png;base64,{image_b64}"] | |
} | |
try: | |
response = requests.post( | |
"https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection", | |
headers=headers, | |
json=payload | |
) | |
response.raise_for_status() | |
return response.json() | |
except Exception as e: | |
st.error(f"Error processing image: {str(e)}") | |
return None | |
def main(): | |
st.title("Deepfake Detection") | |
st.write("Upload an image to detect potential deepfakes") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display original image | |
image_bytes = uploaded_file.getvalue() | |
image = Image.open(io.BytesIO(image_bytes)) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Original Image") | |
st.image(image, use_container_width=True) | |
# Process image | |
with st.spinner("Analyzing image..."): | |
result = process_image(image_bytes) | |
if result and 'data' in result: | |
data = result['data'][0] | |
# Display results | |
if 'bounding_boxes' in data: | |
for box in data['bounding_boxes']: | |
# Draw bounding box on image | |
annotated_image = draw_bounding_box( | |
image, | |
box['vertices'], | |
box['bbox_confidence'], | |
box['is_deepfake'] | |
) | |
with col2: | |
st.subheader("Analysis Result") | |
st.image(annotated_image, use_container_width=True) | |
# Display confidence metrics | |
deepfake_conf = box['is_deepfake'] * 100 | |
bbox_conf = box['bbox_confidence'] * 100 | |
st.write("### Detection Confidence") | |
col3, col4 = st.columns(2) | |
with col3: | |
st.metric("Deepfake Confidence", f"{deepfake_conf:.1f}%") | |
st.progress(deepfake_conf/100) | |
with col4: | |
st.metric("Face Detection Confidence", f"{bbox_conf:.1f}%") | |
st.progress(bbox_conf/100) | |
if deepfake_conf > 90: | |
st.error("⚠️ High probability of deepfake detected!") | |
elif deepfake_conf > 70: | |
st.warning("⚠️ Moderate probability of deepfake detected!") | |
else: | |
st.success("✅ Low probability of deepfake") | |
# Display raw JSON data in expander | |
with st.expander("View Raw JSON Response"): | |
st.json(result) | |
else: | |
st.warning("No faces detected in the image") | |
else: | |
st.error("Failed to process image") | |
def calculate_similarity(text1, text2): | |
matcher = SequenceMatcher(None, text1, text2) | |
return matcher.ratio() | |
if __name__ == "__main__": | |
main() | |