Spaces:
Sleeping
Sleeping
File size: 17,235 Bytes
9e3c734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
from __future__ import annotations
import collections
import contextlib
import sys
from collections.abc import Iterable, AsyncIterable
import dataclasses
import itertools
import textwrap
from typing import TypedDict, Union
import google.protobuf.json_format
import google.api_core.exceptions
from google.ai import generativelanguage as glm
from google.generativeai import string_utils
__all__ = [
"AsyncGenerateContentResponse",
"BlockedPromptException",
"StopCandidateException",
"IncompleteIterationError",
"BrokenResponseError",
"GenerationConfigDict",
"GenerationConfigType",
"GenerationConfig",
"GenerateContentResponse",
]
if sys.version_info < (3, 10):
def aiter(obj):
return obj.__aiter__()
async def anext(obj, default=None):
try:
return await obj.__anext__()
except StopAsyncIteration:
if default is not None:
return default
else:
raise
class BlockedPromptException(Exception):
pass
class StopCandidateException(Exception):
pass
class IncompleteIterationError(Exception):
pass
class BrokenResponseError(Exception):
pass
class GenerationConfigDict(TypedDict):
# TODO(markdaoust): Python 3.11+ use `NotRequired`, ref: https://peps.python.org/pep-0655/
candidate_count: int
stop_sequences: Iterable[str]
max_output_tokens: int
temperature: float
@dataclasses.dataclass
class GenerationConfig:
"""A simple dataclass used to configure the generation parameters of `GenerativeModel.generate_content`.
Attributes:
candidate_count:
Number of generated responses to return.
stop_sequences:
The set of character sequences (up
to 5) that will stop output generation. If
specified, the API will stop at the first
appearance of a stop sequence. The stop sequence
will not be included as part of the response.
max_output_tokens:
The maximum number of tokens to include in a
candidate.
If unset, this will default to output_token_limit specified
in the model's specification.
temperature:
Controls the randomness of the output. Note: The
default value varies by model, see the `Model.temperature`
attribute of the `Model` returned the `genai.get_model`
function.
Values can range from [0.0,1.0], inclusive. A value closer
to 1.0 will produce responses that are more varied and
creative, while a value closer to 0.0 will typically result
in more straightforward responses from the model.
top_p:
Optional. The maximum cumulative probability of tokens to
consider when sampling.
The model uses combined Top-k and nucleus sampling.
Tokens are sorted based on their assigned probabilities so
that only the most likely tokens are considered. Top-k
sampling directly limits the maximum number of tokens to
consider, while Nucleus sampling limits number of tokens
based on the cumulative probability.
Note: The default value varies by model, see the
`Model.top_p` attribute of the `Model` returned the
`genai.get_model` function.
top_k (int):
Optional. The maximum number of tokens to consider when
sampling.
The model uses combined Top-k and nucleus sampling.
Top-k sampling considers the set of `top_k` most probable
tokens. Defaults to 40.
Note: The default value varies by model, see the
`Model.top_k` attribute of the `Model` returned the
`genai.get_model` function.
"""
candidate_count: int | None = None
stop_sequences: Iterable[str] | None = None
max_output_tokens: int | None = None
temperature: float | None = None
top_p: float | None = None
top_k: int | None = None
GenerationConfigType = Union[glm.GenerationConfig, GenerationConfigDict, GenerationConfig]
def to_generation_config_dict(generation_config: GenerationConfigType):
if generation_config is None:
return {}
elif isinstance(generation_config, glm.GenerationConfig):
return type(generation_config).to_dict(generation_config) # pytype: disable=attribute-error
elif isinstance(generation_config, GenerationConfig):
generation_config = dataclasses.asdict(generation_config)
return {key: value for key, value in generation_config.items() if value is not None}
elif hasattr(generation_config, "keys"):
return dict(generation_config)
else:
raise TypeError(
"Did not understand `generation_config`, expected a `dict` or"
f" `GenerationConfig`\nGot type: {type(generation_config)}\nValue:"
f" {generation_config}"
)
def _join_citation_metadatas(
citation_metadatas: Iterable[glm.CitationMetadata],
):
citation_metadatas = list(citation_metadatas)
return citation_metadatas[-1]
def _join_safety_ratings_lists(
safety_ratings_lists: Iterable[list[glm.SafetyRating]],
):
ratings = {}
blocked = collections.defaultdict(list)
for safety_ratings_list in safety_ratings_lists:
for rating in safety_ratings_list:
ratings[rating.category] = rating.probability
blocked[rating.category].append(rating.blocked)
blocked = {category: any(blocked) for category, blocked in blocked.items()}
safety_list = []
for (category, probability), blocked in zip(ratings.items(), blocked.values()):
safety_list.append(
glm.SafetyRating(category=category, probability=probability, blocked=blocked)
)
return safety_list
def _join_contents(contents: Iterable[glm.Content]):
contents = tuple(contents)
roles = [c.role for c in contents if c.role]
if roles:
role = roles[0]
else:
role = ""
parts = []
for content in contents:
parts.extend(content.parts)
merged_parts = [parts.pop(0)]
for part in parts:
if not merged_parts[-1].text:
merged_parts.append(part)
continue
if not part.text:
merged_parts.append(part)
continue
merged_part = glm.Part(merged_parts[-1])
merged_part.text += part.text
merged_parts[-1] = merged_part
return glm.Content(
role=role,
parts=merged_parts,
)
def _join_candidates(candidates: Iterable[glm.Candidate]):
candidates = tuple(candidates)
index = candidates[0].index # These should all be the same.
return glm.Candidate(
index=index,
content=_join_contents([c.content for c in candidates]),
finish_reason=candidates[-1].finish_reason,
safety_ratings=_join_safety_ratings_lists([c.safety_ratings for c in candidates]),
citation_metadata=_join_citation_metadatas([c.citation_metadata for c in candidates]),
)
def _join_candidate_lists(candidate_lists: Iterable[list[glm.Candidate]]):
# Assuming that is a candidate ends, it is no longer returned in the list of
# candidates and that's why candidates have an index
candidates = collections.defaultdict(list)
for candidate_list in candidate_lists:
for candidate in candidate_list:
candidates[candidate.index].append(candidate)
new_candidates = []
for index, candidate_parts in sorted(candidates.items()):
new_candidates.append(_join_candidates(candidate_parts))
return new_candidates
def _join_prompt_feedbacks(
prompt_feedbacks: Iterable[glm.GenerateContentResponse.PromptFeedback],
):
# Always return the first prompt feedback.
return next(iter(prompt_feedbacks))
def _join_chunks(chunks: Iterable[glm.GenerateContentResponse]):
return glm.GenerateContentResponse(
candidates=_join_candidate_lists(c.candidates for c in chunks),
prompt_feedback=_join_prompt_feedbacks(c.prompt_feedback for c in chunks),
)
_INCOMPLETE_ITERATION_MESSAGE = """\
Please let the response complete iteration before accessing the final accumulated
attributes (or call `response.resolve()`)"""
class BaseGenerateContentResponse:
def __init__(
self,
done: bool,
iterator: (
None
| Iterable[glm.GenerateContentResponse]
| AsyncIterable[glm.GenerateContentResponse]
),
result: glm.GenerateContentResponse,
chunks: Iterable[glm.GenerateContentResponse] | None = None,
):
self._done = done
self._iterator = iterator
self._result = result
if chunks is None:
self._chunks = [result]
else:
self._chunks = list(chunks)
if result.prompt_feedback.block_reason:
self._error = BlockedPromptException(result)
else:
self._error = None
@property
def candidates(self):
"""The list of candidate responses.
Raises:
IncompleteIterationError: With `stream=True` if iteration over the stream was not completed.
"""
if not self._done:
raise IncompleteIterationError(_INCOMPLETE_ITERATION_MESSAGE)
return self._result.candidates
@property
def parts(self):
"""A quick accessor equivalent to `self.candidates[0].parts`
Raises:
ValueError: If the candidate list does not contain exactly one candidate.
"""
candidates = self.candidates
if not candidates:
raise ValueError(
"The `response.parts` quick accessor only works for a single candidate, "
"but none were returned. Check the `response.prompt_feedback` to see if the prompt was blocked."
)
if len(candidates) > 1:
raise ValueError(
"The `response.parts` quick accessor only works with a "
"single candidate. With multiple candidates use "
"result.candidates[index].text"
)
parts = candidates[0].content.parts
return parts
@property
def text(self):
"""A quick accessor equivalent to `self.candidates[0].parts[0].text`
Raises:
ValueError: If the candidate list or parts list does not contain exactly one entry.
"""
parts = self.parts
if not parts:
raise ValueError(
"The `response.text` quick accessor only works when the response contains a valid "
"`Part`, but none was returned. Check the `candidate.safety_ratings` to see if the "
"response was blocked."
)
return parts[0].text
@property
def prompt_feedback(self):
return self._result.prompt_feedback
def __str__(self) -> str:
if self._done:
_iterator = "None"
else:
_iterator = f"<{self._iterator.__class__.__name__}>"
_result = f"glm.GenerateContentResponse({type(self._result).to_dict(self._result)})"
if self._error:
_error = f",\nerror=<{self._error.__class__.__name__}> {self._error}"
else:
_error = ""
return (
textwrap.dedent(
f"""\
response:
{type(self).__name__}(
done={self._done},
iterator={_iterator},
result={_result},
)"""
)
+ _error
)
__repr__ = __str__
@contextlib.contextmanager
def rewrite_stream_error():
try:
yield
except (google.protobuf.json_format.ParseError, AttributeError) as e:
raise google.api_core.exceptions.BadRequest(
"Unknown error trying to retrieve streaming response. "
"Please retry with `stream=False` for more details."
)
GENERATE_CONTENT_RESPONSE_DOC = """Instances of this class manage the response of the `generate_content` method.
These are returned by `GenerativeModel.generate_content` and `ChatSession.send_message`.
This object is based on the low level `glm.GenerateContentResponse` class which just has `prompt_feedback`
and `candidates` attributes. This class adds several quick accessors for common use cases.
The same object type is returned for both `stream=True/False`.
### Streaming
When you pass `stream=True` to `GenerativeModel.generate_content` or `ChatSession.send_message`,
iterate over this object to receive chunks of the response:
```
response = model.generate_content(..., stream=True):
for chunk in response:
print(chunk.text)
```
`GenerateContentResponse.prompt_feedback` is available immediately but
`GenerateContentResponse.candidates`, and all the attributes derived from them (`.text`, `.parts`),
are only available after the iteration is complete.
"""
ASYNC_GENERATE_CONTENT_RESPONSE_DOC = (
"""This is the async version of `genai.GenerateContentResponse`."""
)
@string_utils.set_doc(GENERATE_CONTENT_RESPONSE_DOC)
class GenerateContentResponse(BaseGenerateContentResponse):
@classmethod
def from_iterator(cls, iterator: Iterable[glm.GenerateContentResponse]):
iterator = iter(iterator)
with rewrite_stream_error():
response = next(iterator)
return cls(
done=False,
iterator=iterator,
result=response,
)
@classmethod
def from_response(cls, response: glm.GenerateContentResponse):
return cls(
done=True,
iterator=None,
result=response,
)
def __iter__(self):
# This is not thread safe.
if self._done:
for chunk in self._chunks:
yield GenerateContentResponse.from_response(chunk)
return
# Always have the next chunk available.
if len(self._chunks) == 0:
self._chunks.append(next(self._iterator))
for n in itertools.count():
if self._error:
raise self._error
if n >= len(self._chunks) - 1:
# Look ahead for a new item, so that you know the stream is done
# when you yield the last item.
if self._done:
return
try:
item = next(self._iterator)
except StopIteration:
self._done = True
except Exception as e:
self._error = e
self._done = True
else:
self._chunks.append(item)
self._result = _join_chunks([self._result, item])
item = self._chunks[n]
item = GenerateContentResponse.from_response(item)
yield item
def resolve(self):
if self._done:
return
for _ in self:
pass
@string_utils.set_doc(ASYNC_GENERATE_CONTENT_RESPONSE_DOC)
class AsyncGenerateContentResponse(BaseGenerateContentResponse):
@classmethod
async def from_aiterator(cls, iterator: AsyncIterable[glm.GenerateContentResponse]):
iterator = aiter(iterator) # type: ignore
with rewrite_stream_error():
response = await anext(iterator) # type: ignore
return cls(
done=False,
iterator=iterator,
result=response,
)
@classmethod
def from_response(cls, response: glm.GenerateContentResponse):
return cls(
done=True,
iterator=None,
result=response,
)
async def __aiter__(self):
# This is not thread safe.
if self._done:
for chunk in self._chunks:
yield GenerateContentResponse.from_response(chunk)
return
# Always have the next chunk available.
if len(self._chunks) == 0:
self._chunks.append(await anext(self._iterator)) # type: ignore
for n in itertools.count():
if self._error:
raise self._error
if n >= len(self._chunks) - 1:
# Look ahead for a new item, so that you know the stream is done
# when you yield the last item.
if self._done:
return
try:
item = await anext(self._iterator) # type: ignore
except StopAsyncIteration:
self._done = True
except Exception as e:
self._error = e
self._done = True
else:
self._chunks.append(item)
self._result = _join_chunks([self._result, item])
item = self._chunks[n]
item = GenerateContentResponse.from_response(item)
yield item
async def resolve(self):
if self._done:
return
async for _ in self:
pass
|