Spaces:
Sleeping
Sleeping
File size: 28,553 Bytes
3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 bb5747b 3cd24d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import streamlit as st
import requests
import pandas as pd
import time
import json
import re
import sys
import subprocess
from datetime import datetime, date, timedelta
from urllib.parse import urlencode
from typing import Dict, List, Optional
import google.generativeai as genai
import plotly.express as px
st.set_page_config(
page_title="Steam App Reviews - Themes Analysis",
page_icon="🎮",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS to improve UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem !important;
color: #1e88e5;
}
.theme-card {
background-color: #f5f5f5;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1rem;
border-left: 5px solid #1e88e5;
}
.theme-title {
font-size: 1.2rem;
font-weight: bold;
color: #1e88e5;
}
.theme-desc {
color: #424242;
margin: 0.5rem 0;
}
.theme-count {
font-size: 0.9rem;
color: #616161;
}
.sentiment-positive {
background-color: #D5EAD8;
color: #2E8B57;
padding: 3px 8px;
border-radius: 10px;
}
.sentiment-negative {
background-color: #FFE4E1;
color: #CD5C5C;
padding: 3px 8px;
border-radius: 10px;
}
.sentiment-mixed {
background-color: #FFF8DC;
color: #DAA520;
padding: 3px 8px;
border-radius: 10px;
}
.app-info {
background-color: #f0f8ff;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
# Title and description
st.markdown('<h1 class="main-header">🎮 Steam App Reviews - Themes Analysis</h1>', unsafe_allow_html=True)
st.markdown("""
This tool analyzes user reviews for Steam games to identify common themes, sentiments, and feedback patterns.
Upload your Google Gemini API key, enter a Steam App ID, select a date range, and get valuable insights from user reviews.
""")
# Initialize session state variables
if 'reviews_data' not in st.session_state:
st.session_state['reviews_data'] = None
if 'themes_df' not in st.session_state:
st.session_state['themes_df'] = None
if 'app_info' not in st.session_state:
st.session_state['app_info'] = None
# Sidebar inputs for user interaction
st.sidebar.header("User Input Parameters")
# User input for Google Gemini API key
api_key_input = st.sidebar.text_input(
"Enter your Google Gemini API Key:",
type="password",
help="Your API key will be used to access the Google Gemini API for theme extraction.",
)
# Initialize Google Gemini client
gemini_client = None
if api_key_input:
try:
genai.configure(api_key=api_key_input)
model = genai.GenerativeModel(model_name='gemini-1.5-pro')
gemini_client = model
st.sidebar.success("Gemini API connection established!")
except Exception as e:
st.sidebar.error(f"Error initializing Gemini API: {str(e)}")
else:
st.sidebar.warning("Please enter your Google Gemini API Key to proceed.")
# User input for App ID
appid = st.sidebar.text_input(
"Enter the Steam App ID:",
value="1782120",
help="Find the App ID in the URL of the game's Steam page."
)
# Validate App ID
def is_valid_app_id(app_id: str) -> bool:
if not app_id or not app_id.isdigit():
return False
return True
if not is_valid_app_id(appid):
st.sidebar.error("Please enter a valid Steam App ID (numeric only).")
# Date input for selecting a range
st.sidebar.write("Select the date range for reviews:")
start_date = st.sidebar.date_input(
"Start Date",
value=datetime.today() - timedelta(days=7)
)
end_date = st.sidebar.date_input(
"End Date",
value=datetime.today()
)
# Validate date range
if start_date and end_date:
today = date.today()
# Check if end date is in the future
if end_date > today:
st.sidebar.error("Error: End date cannot be in the future.")
st.stop()
# Check if start date is after end date
if start_date > end_date:
st.sidebar.error("Error: Start date must be before end date.")
st.stop()
# Check if date range is too large
date_range = (end_date - start_date).days
if date_range > 365:
st.sidebar.warning("Warning: Large date ranges may result in incomplete data due to Steam API limitations.")
elif date_range < 0:
st.sidebar.error("Error: Invalid date range selected.")
st.stop()
# Maximum reviews to fetch
max_reviews = st.sidebar.slider(
"Maximum reviews to fetch:",
min_value=50,
max_value=500,
value=200,
step=50,
help="Higher values may take longer to process."
)
# Language filter
language_filter = st.sidebar.multiselect(
"Filter by languages:",
options=["english", "spanish", "french", "german", "italian", "russian", "all"],
default=["english"],
help="Select 'all' to include all languages or choose specific languages."
)
# Advanced options
advanced_options = st.sidebar.expander("Advanced Analysis Options")
with advanced_options:
include_sentiment = st.checkbox(
"Include sentiment analysis",
value=True,
help="Analyze the sentiment of each review and theme."
)
cluster_similar_themes = st.checkbox(
"Cluster similar themes",
value=True,
help="Group themes that are semantically similar."
)
min_mention_threshold = st.slider(
"Minimum reviews per theme:",
min_value=1,
max_value=10,
value=2,
help="Only show themes mentioned in at least this many reviews."
)
# Function to fetch app information
@st.cache_data(ttl=3600, show_spinner=False)
def get_app_info(app_id: str) -> Optional[Dict]:
"""
Fetches information about a Steam game using its App ID.
"""
try:
url = f"https://store.steampowered.com/api/appdetails?appids={app_id}"
response = requests.get(url, timeout=10)
response.raise_for_status()
data = response.json()
if data.get(app_id, {}).get('success', False):
app_data = data[app_id]['data']
return {
'name': app_data.get('name', 'Unknown Game'),
'header_image': app_data.get('header_image', ''),
'release_date': app_data.get('release_date', {}).get('date', 'Unknown'),
'developers': app_data.get('developers', ['Unknown']),
'publishers': app_data.get('publishers', ['Unknown'])
}
return None
except Exception as e:
st.sidebar.error(f"Error fetching app info: {str(e)}")
return None
# Function to fetch reviews
@st.cache_data(ttl=1800, show_spinner=False)
def fetch_reviews(app_id: str, start_timestamp: int, end_timestamp: int,
max_reviews: int = 1000, language_filter: List[str] = ["english"]) -> Optional[List]:
"""
Fetches Steam reviews for the specified app within the given date range.
Implements batch processing and caching for efficient handling of large volumes.
"""
# Define the base API URL
base_url = f"https://store.steampowered.com/appreviews/{app_id}?json=1"
# Normalize language filter and handle 'all' case
normalized_language_filter = [lang.lower() for lang in language_filter]
use_all_languages = "all" in normalized_language_filter
# Calculate day range dynamically based on start and end timestamps
day_range = min(365, (end_timestamp - start_timestamp) // 86400 + 1)
# Define initial API parameters with optimized batch size
params = {
"filter": "updated", # Use 'updated' to get all reviews in date range
"language": "all" if use_all_languages else ",".join(normalized_language_filter),
"day_range": str(day_range),
"review_type": "all",
"purchase_type": "all",
"num_per_page": "100", # Maximum allowed by Steam API
"cursor": "*",
"filter_offtopic_activity": 0,
"start_date": start_timestamp,
"end_date": end_timestamp
}
# Initialize cache for review batches
if 'review_cache' not in st.session_state:
st.session_state.review_cache = {}
cache_key = f"{app_id}_{start_timestamp}_{end_timestamp}_{language_filter}"
# Check cache first
if cache_key in st.session_state.review_cache:
cached_reviews = st.session_state.review_cache[cache_key]
if len(cached_reviews) >= max_reviews:
return cached_reviews[:max_reviews]
reviews_list = []
request_count = 0
max_requests = 100 # Increased limit for larger datasets
retry_attempts = 3 # Number of retry attempts for failed requests
batch_size = 100 # Size of each batch
progress_bar = st.progress(0)
status_text = st.empty()
# Create a container for batch progress
batch_container = st.empty()
while True:
# URL encode the cursor parameter
params_encoded = params.copy()
params_encoded["cursor"] = params["cursor"].replace("+", "%2B")
# Construct the full URL with parameters
url = base_url + "&" + urlencode(params_encoded)
try:
for attempt in range(retry_attempts):
response = requests.get(url, timeout=15)
response.raise_for_status()
data = response.json()
# Check if we have any reviews
reviews = data.get('reviews')
if not reviews:
status_text.warning("No reviews found for the specified date range and filters.")
return []
# Process reviews
for review in reviews:
timestamp = review.get("timestamp_created", 0)
review_language = review.get("language", "").lower()
# Validate timestamp is within range
is_in_timerange = start_timestamp <= timestamp <= end_timestamp
# Check language filter
is_valid_language = "all" in language_filter or review_language in [lang.lower() for lang in language_filter]
if is_in_timerange and is_valid_language:
reviews_list.append(review)
# Update progress
progress = min(len(reviews_list) / max_reviews * 100, 100)
progress_bar.progress(int(progress))
status_text.text(f"Fetched {len(reviews_list)} reviews...")
# Check if we've reached max reviews or earlier timestamp
if len(reviews_list) >= max_reviews:
break
if any(r.get("timestamp_created", 0) < start_timestamp for r in reviews):
break
# Update cursor for next batch
new_cursor = data.get("cursor")
if new_cursor is None or params["cursor"] == new_cursor:
break
params["cursor"] = new_cursor
# Handle rate limiting
if 'X-Rate-Limit-Remaining' in response.headers:
remaining_calls = int(response.headers['X-Rate-Limit-Remaining'])
time.sleep(0.5 if remaining_calls < 10 else 0.2)
else:
time.sleep(0.2)
# Update batch progress
batch_container.text(f"Processing batch {request_count + 1} of {max_requests} (max)")
# Check request limits
request_count += 1
if request_count >= max_requests:
status_text.warning("Reached maximum number of requests. Some reviews may not be fetched.")
break
break # Success - exit retry loop
except requests.exceptions.RequestException as e:
status_text.error(f"Steam API Error: {str(e)}")
if attempt < retry_attempts - 1:
time.sleep(1) # Wait before retrying
continue
return None
# Clean up progress indicators
progress_bar.empty()
status_text.empty()
batch_container.empty()
# Cache and return results
st.session_state.review_cache[cache_key] = reviews_list
return reviews_list
# Function to extract themes using Google Gemini 1.5 Pro
def extract_themes(df: pd.DataFrame,
include_sentiment: bool = True,
cluster_similar_themes: bool = True,
min_mention_threshold: int = 2) -> Optional[pd.DataFrame]:
"""
Uses Google Gemini 1.5 Pro to identify the most common themes in reviews.
Implements batched processing and caching for large datasets.
"""
if len(df) == 0:
st.error("No reviews to analyze.")
return None
# Get counts of positive and negative reviews (if available)
positive_count = 0
negative_count = 0
if "Recommended" in df.columns:
positive_count = df["Recommended"].sum()
negative_count = len(df) - positive_count
# Initialize theme cache
if 'theme_cache' not in st.session_state:
st.session_state.theme_cache = {}
# Calculate cache key based on review content hash
cache_key = hash(tuple(sorted(df['Review'].values)))
# Check cache first
if cache_key in st.session_state.theme_cache:
return st.session_state.theme_cache[cache_key]
# Process reviews in batches to handle large datasets
batch_size = 200 # Optimal batch size for Gemini API
total_batches = (len(df) + batch_size - 1) // batch_size
all_themes = []
progress_bar = st.progress(0)
batch_status = st.empty()
for batch_idx in range(total_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(df))
df_batch = df.iloc[start_idx:end_idx]
# Combine reviews into a single string with IDs
reviews_text = "\n\n".join([
f"Review ID: {row['Review ID']}\nReview Text: {row['Review']}"
for _, row in df.iterrows()
])
# Prepare the prompt
sentiment_instruction = "For each theme, analyze the sentiment (Positive, Negative, or Mixed)." if include_sentiment else ""
clustering_instruction = "Cluster similar themes together." if cluster_similar_themes else ""
# Fix the JSON template structure
sentiment_field = '"Sentiment": "Positive/Negative/Mixed",' if include_sentiment else ""
prompt = f"""
Analyze these {len(df)} user reviews for a game with {positive_count} positive and {negative_count} negative reviews.
Identify significant themes. {clustering_instruction}
For each theme:
1. Provide a concise, specific name
2. Write a detailed description summarizing user feedback
3. List the Review IDs where the theme is mentioned
4. {sentiment_instruction}
Only include themes mentioned in at least {min_mention_threshold} different reviews.
Provide the output as a JSON array with the following structure:
[
{{
"Theme": "theme_name",
"Description": "detailed_description",
"Review IDs": ["id1", "id2", ...],
{sentiment_field}
}},
...
]
Reviews:
{reviews_text}
"""
# Call Google Gemini 1.5 Pro
try:
with st.spinner("Analyzing themes with Google Gemini 1.5 Pro..."):
response = model.generate_content(prompt)
# Extract text from the response
if hasattr(response, 'text'):
response_text = response.text
elif hasattr(response, 'parts') and response.parts:
response_text = response.parts[0].text
else:
response_text = str(response)
# Clean and parse the response text
# First try to extract JSON from code blocks
json_pattern = r'```(?:json)?(.*?)```'
json_matches = re.findall(json_pattern, response_text, re.DOTALL)
if json_matches:
# Use the first JSON block found
json_str = json_matches[0].strip()
else:
# If no code blocks, try to use the entire response as JSON
# Remove any markdown formatting or extra whitespace
json_str = response_text.strip()
# Parse the JSON output
themes_data = json.loads(json_str)
# Convert to DataFrame and add count column
themes_df = pd.DataFrame(themes_data)
themes_df["Count"] = themes_df["Review IDs"].apply(len)
# Sort themes by count (descending)
themes_df = themes_df.sort_values("Count", ascending=False).reset_index(drop=True)
return themes_df
except Exception as e:
st.error(f"Error extracting themes: {str(e)}")
st.error("Response from Gemini API:")
if 'response' in locals():
try:
if hasattr(response, 'text'):
error_text = response.text
elif hasattr(response, 'parts') and response.parts:
error_text = response.parts[0].text
else:
error_text = str(response)
st.error(error_text)
except Exception as e:
st.error(f"Error displaying response: {str(e)}")
return None
# Function to create visualizations
def create_visualizations(themes_df: pd.DataFrame, reviews_df: pd.DataFrame):
"""
Creates visualizations for the theme analysis.
"""
col1, col2 = st.columns(2)
# Theme distribution chart
with col1:
theme_counts = themes_df[["Theme", "Count"]]
fig = px.bar(
theme_counts,
x="Count", y="Theme", orientation="h",
title="Theme Distribution",
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Sentiment analysis chart (if available)
with col2:
if "Sentiment" in themes_df.columns:
sentiment_counts = themes_df["Sentiment"].value_counts().reset_index()
sentiment_counts.columns = ["Sentiment", "Count"]
fig = px.pie(
sentiment_counts,
values="Count", names="Sentiment",
title="Theme Sentiment Distribution",
color="Sentiment",
color_discrete_map={"Positive": "#2E8B57", "Negative": "#CD5C5C", "Mixed": "#DAA520"},
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Review timeline (if timestamp available)
if "Timestamp" in reviews_df.columns:
# Convert timestamp to datetime
reviews_df["Date"] = pd.to_datetime(reviews_df["Timestamp"], unit='s')
# Group by date and count
reviews_by_date = reviews_df.groupby(reviews_df["Date"].dt.date).size().reset_index()
reviews_by_date.columns = ["Date", "Count"]
# Create timeline chart
fig = px.line(
reviews_by_date,
x="Date", y="Count",
title="Reviews Timeline",
markers=True
)
st.plotly_chart(fig, use_container_width=True)
# Validate inputs before processing
if start_date > end_date:
st.error("Error: End date must fall after start date.")
elif not api_key_input:
st.info("Please input your Google Gemini API Key to proceed.")
elif not is_valid_app_id(appid):
st.error("Please enter a valid Steam App ID.")
else:
# Fetch app info
if st.session_state['app_info'] is None or st.session_state.get('current_appid') != appid:
st.session_state['app_info'] = get_app_info(appid)
st.session_state['current_appid'] = appid
# Display app info if available
if st.session_state['app_info']:
app_info = st.session_state['app_info']
col1, col2 = st.columns([1, 3])
with col1:
st.image(app_info['header_image'], width=200)
with col2:
st.markdown(f"""
<div class='app-info'>
<h2>{app_info['name']}</h2>
<p><strong>Release Date:</strong> {app_info['release_date']}</p>
<p><strong>Developers:</strong> {', '.join(app_info['developers'])}</p>
<p><strong>Publishers:</strong> {', '.join(app_info['publishers'])}</p>
</div>
""", unsafe_allow_html=True)
# Fetch reviews button
if st.button("Fetch and Analyze Reviews", type="primary"):
# Convert dates to timestamps
start_timestamp = int(time.mktime(start_date.timetuple()))
end_timestamp = int(time.mktime((end_date + timedelta(days=1)).timetuple())) - 1 # Include the entire end date
# Fetch the reviews
with st.spinner("Fetching reviews from Steam..."):
reviews_data = fetch_reviews(
appid,
start_timestamp,
end_timestamp,
max_reviews=max_reviews,
language_filter=language_filter
)
st.session_state['reviews_data'] = reviews_data
# Check if reviews were fetched
if reviews_data:
st.success(f"Fetched {len(reviews_data)} reviews from App ID {appid}.")
# Create a DataFrame from the review data
df = pd.DataFrame(
[
{
"Review ID": str(review.get("recommendationid")),
"Author SteamID": review.get("author", {}).get("steamid"),
"Language": review.get("language"),
"Review": review.get("review"),
"Recommended": review.get("voted_up", False),
"Votes Helpful": review.get("votes_up", 0),
"Timestamp": review.get("timestamp_created", 0),
"Posted On": datetime.fromtimestamp(
review.get("timestamp_created", 0)
).strftime("%Y-%m-%d %H:%M:%S"),
}
for review in reviews_data
]
)
# Extract themes using Google Gemini 1.5 Pro
themes_df = extract_themes(
df,
include_sentiment=include_sentiment,
cluster_similar_themes=cluster_similar_themes,
min_mention_threshold=min_mention_threshold
)
st.session_state['themes_df'] = themes_df
if themes_df is not None:
# Show summary statistics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Reviews", len(df))
with col2:
positive_count = df["Recommended"].sum()
positive_percent = (positive_count / len(df)) * 100 if len(df) > 0 else 0
st.metric("Positive Reviews", f"{positive_count} ({positive_percent:.1f}%)")
with col3:
negative_count = len(df) - positive_count
negative_percent = (negative_count / len(df)) * 100 if len(df) > 0 else 0
st.metric("Negative Reviews", f"{negative_count} ({negative_percent:.1f}%)")
with col4:
st.metric("Themes Identified", len(themes_df))
# Create visualizations
create_visualizations(themes_df, df)
# Show themes analysis
st.markdown("## 📊 Theme Analysis")
st.dataframe(themes_df)
# Display detailed theme information
st.markdown("## 🔍 Detailed Theme Analysis")
for index, row in themes_df.iterrows():
theme = row["Theme"]
description = row["Description"]
review_ids = row["Review IDs"]
count = row["Count"]
sentiment = row.get("Sentiment", "Not analyzed")
# Create a sentiment badge with appropriate styling
sentiment_class = ""
if sentiment == "Positive":
sentiment_class = "sentiment-positive"
elif sentiment == "Negative":
sentiment_class = "sentiment-negative"
elif sentiment == "Mixed":
sentiment_class = "sentiment-mixed"
# Display theme card with enhanced formatting
sentiment_html = f'<span class="{sentiment_class}">{sentiment}</span>' if sentiment != "Not analyzed" else ""
st.markdown(f"""
<div class="theme-card">
<div class="theme-title">{theme} {sentiment_html}</div>
<p class="theme-desc">{description}</p>
<div class="theme-count">Mentioned in {count} reviews</div>
</div>
""", unsafe_allow_html=True)
with st.expander(f"View reviews mentioning '{theme}'"):
# Get the reviews that mention the theme
try:
reviews_with_theme = df[df["Review ID"].isin(review_ids)][["Review ID", "Review", "Posted On", "Recommended"]]
st.dataframe(reviews_with_theme, use_container_width=True)
except Exception as e:
st.error(f"Error displaying reviews for theme '{theme}': {str(e)}")
# Export options
st.markdown("## 📥 Export Results")
col1, col2 = st.columns(2)
with col1:
# Export reviews as CSV
reviews_csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download Reviews CSV",
data=reviews_csv,
file_name=f"steam_reviews_{appid}_{start_date}_to_{end_date}.csv",
mime="text/csv"
)
with col2:
# Export themes as CSV
themes_csv = themes_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download Themes Analysis CSV",
data=themes_csv,
file_name=f"steam_themes_{appid}_{start_date}_to_{end_date}.csv",
mime="text/csv"
)
else:
st.warning("Failed to extract themes. Please try again or adjust parameters.")
else:
st.warning("No reviews found for the specified date range and filters.")
# Display the raw reviews data if available
if st.session_state['reviews_data'] is not None:
with st.expander("View Raw Reviews Data"):
reviews_df = pd.DataFrame(
[
{
"Review ID": str(review.get("recommendationid")),
"Author SteamID": review.get("author", {}).get("steamid"),
"Language": review.get("language"),
"Review": review.get("review"),
"Recommended": review.get("voted_up", False),
"Votes Helpful": review.get("votes_up", 0),
"Posted On": datetime.fromtimestamp(
review.get("timestamp_created", 0)
).strftime("%Y-%m-%d %H:%M:%S"),
}
for review in st.session_state['reviews_data']
]
)
st.dataframe(reviews_df, use_container_width=True)
|