Spaces:
Sleeping
Sleeping
File size: 8,080 Bytes
5e1d775 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from openai import OpenAI
import os
from dotenv import load_dotenv
import json
# Load environment variables
load_dotenv()
# Set page config
st.set_page_config(
page_title="GPT-4o Calculator & Demo",
page_icon="π€",
layout="wide",
initial_sidebar_state="collapsed"
)
# Custom CSS for dark theme
st.markdown("""
<style>
/* Dark theme */
.stApp {
background-color: #0e1117;
color: #ffffff;
}
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 1rem;
background-color: #1a1f2b;
padding: 0.5rem;
border-radius: 0.5rem;
}
.stTabs [data-baseweb="tab"] {
height: auto;
padding: 1rem;
background-color: #262b37;
border: 1px solid #2d3748;
border-radius: 0.5rem;
color: #e2e8f0;
font-weight: 500;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #2d3748;
}
/* Card styling */
.card {
padding: 1.5rem;
background-color: #1a1f2b;
border: 1px solid #2d3748;
border-radius: 0.5rem;
margin: 1rem 0;
}
/* Text styling */
h1, h2, h3 {
color: #e2e8f0;
}
p {
color: #a0aec0;
}
/* Input styling */
.stTextInput > div > div {
background-color: #262b37;
color: #e2e8f0;
}
/* Metric styling */
[data-testid="stMetricValue"] {
color: #e2e8f0;
}
</style>
""", unsafe_allow_html=True)
# Check for API key
if 'OPENAI_API_KEY' not in st.session_state:
api_key = st.text_input('Enter your OpenAI API key:', type='password')
if api_key:
st.session_state['OPENAI_API_KEY'] = api_key
st.success('API key saved!')
else:
st.warning('Please enter your OpenAI API key to continue.')
st.stop()
# Initialize OpenAI client
client = OpenAI(api_key=st.session_state['OPENAI_API_KEY'])
# Pricing data
pricing_data = {
"gpt-4o-audio-preview": {
"text_input": 2.50,
"text_output": 10.00,
"audio_input": 100.00,
"audio_output": 200.00,
"description": "Full-featured model with highest quality"
},
"gpt-4o-mini-audio-preview": {
"text_input": 0.150,
"text_output": 0.600,
"audio_input": 10.000,
"audio_output": 20.000,
"description": "Cost-effective model for development"
}
}
def make_api_call(text_input, model="gpt-4o-mini-audio-preview"):
"""Make actual API call to OpenAI"""
try:
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": text_input
}
]
}
],
modalities=["text", "audio"],
audio={
"voice": "verse",
"format": "pcm16"
},
response_format={
"type": "text"
},
temperature=0,
max_completion_tokens=2048
)
return response
except Exception as e:
return f"Error: {str(e)}"
def calculate_cost(model, input_type, duration):
"""Calculate cost based on input parameters"""
pricing = pricing_data[model]
if input_type == "Audio":
tokens = duration * 1000 # ~1000 tokens per minute of audio
input_cost = (tokens * pricing["audio_input"]) / 1000000
output_cost = (tokens * pricing["audio_output"]) / 1000000
else:
words = duration * 150 # ~150 words per minute
tokens = words * 1.3 # ~1.3 tokens per word
input_cost = (tokens * pricing["text_input"]) / 1000000
output_cost = (tokens * pricing["text_output"]) / 1000000
return {
"tokens": tokens,
"input_cost": input_cost,
"output_cost": output_cost,
"total": input_cost + output_cost
}
# Main app
st.title("GPT-4o Calculator & Demo π€")
# Create tabs
tab1, tab2, tab3 = st.tabs([
"π° Cost Calculator",
"π― Live Demo",
"π Documentation"
])
# Tab 1: Cost Calculator
with tab1:
st.header("Cost Calculator")
col1, col2 = st.columns([1, 1])
with col1:
model = st.selectbox(
"Select Model",
options=list(pricing_data.keys()),
help="Choose the GPT-4o model"
)
input_type = st.radio(
"Input Type",
options=["Text", "Audio"],
horizontal=True,
help="Select the type of content you're processing"
)
duration = st.number_input(
"Duration (minutes)",
min_value=0.0,
value=1.0,
step=0.5,
help="Enter the duration of your content"
)
costs = calculate_cost(model, input_type, duration)
with col2:
st.subheader("Cost Breakdown")
col_a, col_b = st.columns(2)
with col_a:
st.metric("Input Cost", f"${costs['input_cost']:.2f}")
with col_b:
st.metric("Output Cost", f"${costs['output_cost']:.2f}")
st.metric("Total Cost", f"${costs['total']:.2f}")
# Visualize token usage
fig = px.pie(
values=[costs['input_cost'], costs['output_cost']],
names=['Input Cost', 'Output Cost'],
title='Cost Distribution'
)
fig.update_layout(
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
font_color='#e2e8f0'
)
st.plotly_chart(fig, use_container_width=True)
# Tab 2: Live Demo
with tab2:
st.header("Live API Demo")
demo_text = st.text_input(
"Enter your message",
value="Hello, how are you today?",
help="Enter the text you want to process"
)
demo_model = st.selectbox(
"Select Model",
options=list(pricing_data.keys()),
key="demo_model"
)
if st.button("Send Message"):
with st.spinner("Processing your request..."):
response = make_api_call(demo_text, demo_model)
st.subheader("API Response")
if isinstance(response, str) and response.startswith("Error"):
st.error(response)
else:
st.code(json.dumps(response, indent=2), language="json")
# Calculate cost for this request
text_costs = calculate_cost(demo_model, "Text", len(demo_text.split()) / 150)
st.info(f"Cost for this request: ${text_costs['total']:.4f}")
# Tab 3: Documentation
with tab3:
st.header("Documentation")
st.subheader("Model Capabilities")
st.markdown("""
GPT-4o supports:
- Text-to-text conversion
- Text-to-audio conversion
- Audio-to-text conversion
- Audio-to-audio conversion
""")
st.subheader("Token Usage")
token_data = pd.DataFrame([
{"Content Type": "Text", "Token Rate": "~1.3 tokens per word"},
{"Content Type": "Audio", "Token Rate": "~1000 tokens per minute"}
])
st.table(token_data)
st.subheader("Pricing Details")
for model, prices in pricing_data.items():
with st.expander(model):
st.markdown(f"""
**Text Processing**
- Input: ${prices['text_input']}/1M tokens
- Output: ${prices['text_output']}/1M tokens
**Audio Processing**
- Input: ${prices['audio_input']}/1M tokens
- Output: ${prices['audio_output']}/1M tokens
""")
# Footer
st.markdown("---")
st.caption("Note: All calculations are estimates. Actual costs may vary based on specific usage patterns.") |