Spaces:
Sleeping
Sleeping
File size: 7,915 Bytes
dc7620a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
# Set page config
st.set_page_config(
page_title="GPT-4o Cost Calculator",
page_icon="๐ฐ",
layout="wide"
)
# Custom CSS
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stAlert {
padding: 1rem;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Define the pricing data
pricing_data = {
"gpt-4o-audio-preview": {
"text_input": 2.50,
"text_output": 10.00,
"audio_input": 100.00,
"audio_output": 200.00,
"description": "Full-featured model with highest quality"
},
"gpt-4o-audio-preview-2024-12-17": {
"text_input": 2.50,
"text_output": 10.00,
"audio_input": 40.00,
"audio_output": 80.00,
"description": "Updated model with optimized audio pricing"
},
"gpt-4o-audio-preview-2024-10-01": {
"text_input": 2.50,
"text_output": 10.00,
"audio_input": 100.00,
"audio_output": 200.00,
"description": "Legacy model with standard pricing"
},
"gpt-4o-mini-audio-preview": {
"text_input": 0.150,
"text_output": 0.600,
"audio_input": 10.000,
"audio_output": 20.000,
"description": "Cost-effective model for lighter workloads"
},
"gpt-4o-mini-audio-preview-2024-12-17": {
"text_input": 0.150,
"text_output": 0.600,
"audio_input": 10.000,
"audio_output": 20.000,
"description": "Updated mini model with optimized performance"
}
}
# Constants for calculations
TOKENS_PER_MINUTE_AUDIO = 1000 # Approximate tokens per minute of audio
WORDS_PER_MINUTE = 150 # Average speaking rate
TOKENS_PER_WORD = 1.3 # Approximate tokens per word
def calculate_costs(model, input_type, minutes):
"""Calculate costs based on input parameters"""
pricing = pricing_data[model]
if input_type == "Audio":
tokens = minutes * TOKENS_PER_MINUTE_AUDIO
input_cost = (tokens * pricing["audio_input"]) / 1000000
output_cost = (tokens * pricing["audio_output"]) / 1000000
else: # Text
words = minutes * WORDS_PER_MINUTE
tokens = words * TOKENS_PER_WORD
input_cost = (tokens * pricing["text_input"]) / 1000000
output_cost = (tokens * pricing["text_output"]) / 1000000
return {
"tokens": tokens,
"words": words if input_type == "Text" else None,
"input_cost": input_cost,
"output_cost": output_cost,
"total_cost": input_cost + output_cost
}
# Header
st.title("GPT-4o Cost Calculator ๐ฐ")
st.markdown("Estimate your GPT-4o API costs based on usage")
# Create tabs
tab1, tab2, tab3 = st.tabs(["๐ Pricing Reference", "๐งฎ Calculator", "๐ Guide"])
# Tab 1: Pricing Reference
with tab1:
st.header("Original GPT-4o Pricing")
# Create pricing table
pricing_df = pd.DataFrame([
{
"Model": model,
"Description": data["description"],
"Text Input": f"${data['text_input']:.3f}",
"Text Output": f"${data['text_output']:.3f}",
"Audio Input": f"${data['audio_input']:.3f}",
"Audio Output": f"${data['audio_output']:.3f}"
}
for model, data in pricing_data.items()
])
st.dataframe(
pricing_df,
hide_index=True,
use_container_width=True
)
st.caption("All prices are per 1 million tokens")
# Tab 2: Calculator
with tab2:
st.header("Cost Calculator")
# Create two columns
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Input Parameters")
# Model selection
selected_model = st.selectbox(
"Select Model",
options=list(pricing_data.keys()),
help="Choose the GPT-4o model you want to use"
)
# Input type selection
input_type = st.radio(
"Select Input Type",
options=["Text", "Audio"],
help="Choose whether you're processing text or audio",
horizontal=True
)
# Duration input
minutes = st.number_input(
"Duration (minutes)",
min_value=0.0,
value=1.0,
step=0.5,
help="Enter the duration of your content in minutes"
)
# Show relevant examples
if input_type == "Text":
st.info(
f"๐ก For {minutes:.1f} minutes of text:\n"
f"- Approximately {int(minutes * WORDS_PER_MINUTE):,} words\n"
f"- Based on average speaking rate ({WORDS_PER_MINUTE} words/minute)"
)
else:
st.info(
f"๐ก For {minutes:.1f} minutes of audio:\n"
f"- Approximately {int(minutes * TOKENS_PER_MINUTE_AUDIO):,} tokens\n"
f"- Based on audio processing requirements"
)
# Calculate costs
costs = calculate_costs(selected_model, input_type, minutes)
with col2:
st.subheader("Cost Breakdown")
# Create metrics
col_a, col_b = st.columns(2)
with col_a:
st.metric(
"Processing Cost",
f"${costs['input_cost']:.2f}",
f"{costs['tokens']:,.0f} tokens"
)
with col_b:
st.metric(
"Response Cost",
f"${costs['output_cost']:.2f}",
f"{costs['tokens']:,.0f} tokens"
)
# Total cost
st.metric(
"Total Estimated Cost",
f"${costs['total_cost']:.2f}",
f"For {minutes} minute{'s' if minutes != 1 else ''}"
)
# Create a pie chart for cost distribution
fig = px.pie(
values=[costs['input_cost'], costs['output_cost']],
names=['Input Processing', 'Output Processing'],
title='Cost Distribution'
)
st.plotly_chart(fig, use_container_width=True)
# Tab 3: Guide
with tab3:
st.header("Understanding Tokens and Costs")
# What are tokens?
st.subheader("What are tokens?")
st.markdown("""
Tokens are the basic units that GPT-4o processes:
- For text: ~4 characters or ยพ of a word
- For audio: ~1 second of speech
""")
# Examples
col_a, col_b = st.columns(2)
with col_a:
st.subheader("Text Examples")
st.markdown("""
| Content | Words | Tokens |
|---------|-------|---------|
| Short message | 20 | ~26 |
| Email | 200 | ~260 |
| Document page | 500 | ~650 |
""")
with col_b:
st.subheader("Audio Examples")
st.markdown("""
| Content | Duration | Tokens |
|---------|----------|---------|
| Short clip | 1 min | ~1,000 |
| Conversation | 5 min | ~5,000 |
| Meeting | 30 min | ~30,000 |
""")
# Cost optimization tips
st.subheader("Cost Optimization Tips")
st.markdown("""
1. **Choose the right model:**
- Use mini models for development
- Use full models for production
2. **Optimize content length:**
- Keep text concise
- Trim unnecessary audio
3. **Batch processing:**
- Combine related requests
- Process in optimal chunks
""")
# Footer
st.markdown("---")
st.caption("""
Note: These calculations are estimates based on average usage patterns.
Actual token usage and costs may vary depending on the specific content and use case.
Prices are based on the official OpenAI GPT-4o pricing.
""") |