File size: 9,014 Bytes
5e1d775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e1d775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8453
 
 
5e1d775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from openai import OpenAI
import os
from dotenv import load_dotenv
import json

# Load environment variables
load_dotenv()

# Set page config
st.set_page_config(
    page_title="GPT-4o Calculator & Demo",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for dark theme
st.markdown("""
    <style>
    /* Dark theme */
    .stApp {
        background-color: #0e1117;
        color: #ffffff;
    }
    
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 1rem;
        background-color: #1a1f2b;
        padding: 0.5rem;
        border-radius: 0.5rem;
    }
    
    .stTabs [data-baseweb="tab"] {
        height: auto;
        padding: 1rem;
        background-color: #262b37;
        border: 1px solid #2d3748;
        border-radius: 0.5rem;
        color: #e2e8f0;
        font-weight: 500;
    }
    
    .stTabs [data-baseweb="tab"]:hover {
        background-color: #2d3748;
    }
    
    /* Card styling */
    .card {
        padding: 1.5rem;
        background-color: #1a1f2b;
        border: 1px solid #2d3748;
        border-radius: 0.5rem;
        margin: 1rem 0;
    }
    
    /* Text styling */
    h1, h2, h3 {
        color: #e2e8f0;
    }
    
    p {
        color: #a0aec0;
    }
    
    /* Input styling */
    .stTextInput > div > div {
        background-color: #262b37;
        color: #e2e8f0;
    }
    
    /* Metric styling */
    [data-testid="stMetricValue"] {
        color: #e2e8f0;
    }
    </style>
""", unsafe_allow_html=True)

# Check for API key
if 'OPENAI_API_KEY' not in st.session_state:
    api_key = st.text_input('Enter your OpenAI API key:', type='password')
    if api_key:
        st.session_state['OPENAI_API_KEY'] = api_key
        st.success('API key saved!')
    else:
        st.warning('Please enter your OpenAI API key to continue.')
        st.stop()

# Initialize OpenAI client
client = OpenAI(api_key=st.session_state['OPENAI_API_KEY'])

# Pricing data
pricing_data = {
    "gpt-4o-audio-preview": {
        "text_input": 2.50,
        "text_output": 10.00,
        "audio_input": 100.00,
        "audio_output": 200.00,
        "description": "Full-featured model with highest quality"
    },
    "gpt-4o-mini-audio-preview": {
        "text_input": 0.150,
        "text_output": 0.600,
        "audio_input": 10.000,
        "audio_output": 20.000,
        "description": "Cost-effective model for development"
    }
}

def chat_completion_to_dict(response):
    """Convert ChatCompletion object to a dictionary"""
    if isinstance(response, str):
        return {"error": response}
    
    return {
        "id": response.id,
        "choices": [{
            "index": choice.index,
            "message": {
                "role": choice.message.role,
                "content": choice.message.content
            },
            "finish_reason": choice.finish_reason
        } for choice in response.choices],
        "created": response.created,
        "model": response.model,
        "usage": {
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens,
            "total_tokens": response.usage.total_tokens
        }
    }

def make_api_call(text_input, model="gpt-4o-mini-audio-preview"):
    """Make actual API call to OpenAI"""
    try:
        response = client.chat.completions.create(
            model=model,
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": text_input
                        }
                    ]
                }
            ],
            modalities=["text", "audio"],
            audio={
                "voice": "verse",
                "format": "pcm16"
            },
            response_format={
                "type": "text"
            },
            temperature=0,
            max_completion_tokens=2048
        )
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def calculate_cost(model, input_type, duration):
    """Calculate cost based on input parameters"""
    pricing = pricing_data[model]
    
    if input_type == "Audio":
        tokens = duration * 1000  # ~1000 tokens per minute of audio
        input_cost = (tokens * pricing["audio_input"]) / 1000000
        output_cost = (tokens * pricing["audio_output"]) / 1000000
    else:
        words = duration * 150  # ~150 words per minute
        tokens = words * 1.3  # ~1.3 tokens per word
        input_cost = (tokens * pricing["text_input"]) / 1000000
        output_cost = (tokens * pricing["text_output"]) / 1000000
    
    return {
        "tokens": tokens,
        "input_cost": input_cost,
        "output_cost": output_cost,
        "total": input_cost + output_cost
    }

# Main app
st.title("GPT-4o Calculator & Demo πŸ€–")

# Create tabs
tab1, tab2, tab3 = st.tabs([
    "πŸ’° Cost Calculator",
    "🎯 Live Demo",
    "πŸ“š Documentation"
])

# Tab 1: Cost Calculator
with tab1:
    st.header("Cost Calculator")
    
    col1, col2 = st.columns([1, 1])
    
    with col1:
        model = st.selectbox(
            "Select Model",
            options=list(pricing_data.keys()),
            help="Choose the GPT-4o model"
        )
        
        input_type = st.radio(
            "Input Type",
            options=["Text", "Audio"],
            horizontal=True,
            help="Select the type of content you're processing"
        )
        
        duration = st.number_input(
            "Duration (minutes)",
            min_value=0.0,
            value=1.0,
            step=0.5,
            help="Enter the duration of your content"
        )
    
    costs = calculate_cost(model, input_type, duration)
    
    with col2:
        st.subheader("Cost Breakdown")
        
        col_a, col_b = st.columns(2)
        with col_a:
            st.metric("Input Cost", f"${costs['input_cost']:.2f}")
        with col_b:
            st.metric("Output Cost", f"${costs['output_cost']:.2f}")
        
        st.metric("Total Cost", f"${costs['total']:.2f}")
        
        # Visualize token usage
        fig = px.pie(
            values=[costs['input_cost'], costs['output_cost']],
            names=['Input Cost', 'Output Cost'],
            title='Cost Distribution'
        )
        fig.update_layout(
            paper_bgcolor='rgba(0,0,0,0)',
            plot_bgcolor='rgba(0,0,0,0)',
            font_color='#e2e8f0'
        )
        st.plotly_chart(fig, use_container_width=True)

# Tab 2: Live Demo
with tab2:
    st.header("Live API Demo")
    
    demo_text = st.text_input(
        "Enter your message",
        value="Hello, how are you today?",
        help="Enter the text you want to process"
    )
    
    demo_model = st.selectbox(
        "Select Model",
        options=list(pricing_data.keys()),
        key="demo_model"
    )
    
    if st.button("Send Message"):
        with st.spinner("Processing your request..."):
            response = make_api_call(demo_text, demo_model)
            
            st.subheader("API Response")
            if isinstance(response, str) and response.startswith("Error"):
                st.error(response)
            else:
                # Convert the response to a dictionary before JSON serialization
                response_dict = chat_completion_to_dict(response)
                st.code(json.dumps(response_dict, indent=2), language="json")
                
                # Calculate cost for this request
                text_costs = calculate_cost(demo_model, "Text", len(demo_text.split()) / 150)
                st.info(f"Cost for this request: ${text_costs['total']:.4f}")

# Tab 3: Documentation
with tab3:
    st.header("Documentation")
    
    st.subheader("Model Capabilities")
    st.markdown("""
    GPT-4o supports:
    - Text-to-text conversion
    - Text-to-audio conversion
    - Audio-to-text conversion
    - Audio-to-audio conversion
    """)
    
    st.subheader("Token Usage")
    token_data = pd.DataFrame([
        {"Content Type": "Text", "Token Rate": "~1.3 tokens per word"},
        {"Content Type": "Audio", "Token Rate": "~1000 tokens per minute"}
    ])
    st.table(token_data)
    
    st.subheader("Pricing Details")
    for model, prices in pricing_data.items():
        with st.expander(model):
            st.markdown(f"""
            **Text Processing**
            - Input: ${prices['text_input']}/1M tokens
            - Output: ${prices['text_output']}/1M tokens
            
            **Audio Processing**
            - Input: ${prices['audio_input']}/1M tokens
            - Output: ${prices['audio_output']}/1M tokens
            """)

# Footer
st.markdown("---")
st.caption("Note: All calculations are estimates. Actual costs may vary based on specific usage patterns.")