Spaces:
Runtime error
Runtime error
File size: 13,227 Bytes
54a7220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model
import os
import sys
import torch.fft
import math
import traceback
import torch.utils.checkpoint as checkpoint
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
if 'DWCONV_IMPL' in os.environ:
try:
sys.path.append(os.environ['DWCONV_IMPL'])
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
def get_dwconv(dim, kernel, bias):
return DepthWiseConv2dImplicitGEMM(dim, kernel, bias)
print('Using Megvii large kernel dw conv impl')
except:
print(traceback.format_exc())
def get_dwconv(dim, kernel, bias):
return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)
print('[fail to use Megvii Large kernel] Using PyTorch large kernel dw conv impl')
else:
def get_dwconv(dim, kernel, bias):
return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)
print('Using PyTorch large kernel dw conv impl')
class GlobalLocalFilter(nn.Module):
def __init__(self, dim, h=14, w=8):
super().__init__()
self.dw = nn.Conv2d(dim // 2, dim // 2, kernel_size=3, padding=1, bias=False, groups=dim // 2)
self.complex_weight = nn.Parameter(torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
trunc_normal_(self.complex_weight, std=.02)
self.pre_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
self.post_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
def forward(self, x):
x = self.pre_norm(x)
x1, x2 = torch.chunk(x, 2, dim=1)
x1 = self.dw(x1)
x2 = x2.to(torch.float32)
B, C, a, b = x2.shape
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
weight = self.complex_weight
if not weight.shape[1:3] == x2.shape[2:4]:
weight = F.interpolate(weight.permute(3,0,1,2), size=x2.shape[2:4], mode='bilinear', align_corners=True).permute(1,2,3,0)
weight = torch.view_as_complex(weight.contiguous())
x2 = x2 * weight
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)], dim=2).reshape(B, 2 * C, a, b)
x = self.post_norm(x)
return x
class gnconv(nn.Module):
def __init__(self, dim, order=5, gflayer=None, h=14, w=8, s=1.0):
super().__init__()
self.order = order
self.dims = [dim // 2 ** i for i in range(order)]
self.dims.reverse()
self.proj_in = nn.Conv2d(dim, 2*dim, 1)
if gflayer is None:
self.dwconv = get_dwconv(sum(self.dims), 7, True)
else:
self.dwconv = gflayer(sum(self.dims), h=h, w=w)
self.proj_out = nn.Conv2d(dim, dim, 1)
self.pws = nn.ModuleList(
[nn.Conv2d(self.dims[i], self.dims[i+1], 1) for i in range(order-1)]
)
self.scale = s
print('[gconv]', order, 'order with dims=', self.dims, 'scale=%.4f'%self.scale)
def forward(self, x, mask=None, dummy=False):
B, C, H, W = x.shape
fused_x = self.proj_in(x)
pwa, abc = torch.split(fused_x, (self.dims[0], sum(self.dims)), dim=1)
dw_abc = self.dwconv(abc) * self.scale
dw_list = torch.split(dw_abc, self.dims, dim=1)
x = pwa * dw_list[0]
for i in range(self.order -1):
x = self.pws[i](x) * dw_list[i+1]
x = self.proj_out(x)
return x
class Block(nn.Module):
r""" HorNet block
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):
super().__init__()
self.norm1 = LayerNorm(dim, eps=1e-6, data_format='channels_first')
self.gnconv = gnconv(dim) # depthwise conv
self.norm2 = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
if self.gamma1 is not None:
gamma1 = self.gamma1.view(C, 1, 1)
else:
gamma1 = 1
x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x)))
input = x
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm2(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma2 is not None:
x = self.gamma2 * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class HorNet(nn.Module):
r""" HorNet
A PyTorch impl of : `HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions`
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3], base_dim=96, drop_path_rate=0.,
layer_scale_init_value=1e-6, head_init_scale=1.,
gnconv=gnconv, block=Block,
pretrained=None,
use_checkpoint=False,
):
super().__init__()
self.pretrained = pretrained
self.use_checkpoint = use_checkpoint
dims = [base_dim, base_dim*2, base_dim*4, base_dim*8]
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
if not isinstance(gnconv, list):
gnconv = [gnconv, gnconv, gnconv, gnconv]
else:
gnconv = gnconv
assert len(gnconv) == 4
if isinstance(gnconv[0], str):
print('[GConvNet]: convert str gconv to func')
gnconv = [eval(g) for g in gnconv]
if isinstance(block, str):
block = eval(block)
cur = 0
num_features = []
for i in range(4):
stage = nn.Sequential(
*[block(dim=dims[i], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
num_features.append(dims[i])
self.num_features = num_features
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
for i_layer in range(4):
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
def init_weights(self):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
#pretrained = self.pretrained
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
#if isinstance(pretrained, str):
# self.apply(_init_weights)
# logger = get_root_logger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
#elif pretrained is None:
# raise NotImplementedError()
self.apply(_init_weights)
#else:
# raise TypeError('pretrained must be a str or None')
def forward_features(self, x):
outs = dict()
for i in range(4):
x = self.downsample_layers[i](x)
if self.use_checkpoint:
x = checkpoint.checkpoint_sequential(self.stages[i], len(self.stages[i]), x)
else:
x = self.stages[i](x)
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x)
outs["res%i"% (i+2)] = x_out
return outs #tuple(outs)
def forward(self, x):
x = self.forward_features(x)
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
@BACKBONE_REGISTRY.register()
class D2HorNet(HorNet, Backbone):
def __init__(self, cfg, input_shape):
depths=cfg.MODEL.HORNET.DEPTHS
base_dim=cfg.MODEL.HORNET.BASE_DIM
gnconv=cfg.MODEL.HORNET.GCONV
drop_path_rate=cfg.MODEL.HORNET.DROP_PATH_RATE
super().__init__(
depths=depths,
base_dim=base_dim,
gnconv=gnconv,
drop_path_rate=drop_path_rate,
)
self._out_features = cfg.MODEL.HORNET.OUT_FEATURES
self._out_feature_strides = {
"res2": 4,
"res3": 8,
"res4": 16,
"res5": 32,
}
self._out_feature_channels = {
"res2": self.num_features[0],
"res3": self.num_features[1],
"res4": self.num_features[2],
"res5": self.num_features[3],
}
def forward(self, x):
"""
Args:
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
Returns:
dict[str->Tensor]: names and the corresponding features
"""
assert (
x.dim() == 4
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
y = super().forward(x)
for k in y.keys():
if k in self._out_features:
outputs[k] = y[k]
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
@property
def size_divisibility(self):
return 32 |