Spaces:
Runtime error
Runtime error
File size: 12,416 Bytes
54a7220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from models.q_formers import load_qformer_model
class AnyControlNet(LatentDiffusion):
def __init__(self, mode, qformer_config=None, local_control_config=None, global_control_config=None, *args, **kwargs):
super().__init__(*args, **kwargs)
assert mode in ['local', 'uni']
self.mode = mode
self.qformer_config = qformer_config
self.local_control_config = local_control_config
self.global_control_config = global_control_config
self.model.diffusion_model.requires_grad_(False)
self.model.diffusion_model.requires_grad_(False)
self.model.diffusion_model.requires_grad_(False)
q_former, (vis_processor, txt_processor) = load_qformer_model(qformer_config)
self.q_former = q_former
self.qformer_vis_processor = vis_processor
self.qformer_txt_processor = txt_processor
self.local_adapter = instantiate_from_config(local_control_config)
self.local_control_scales = [1.0] * 13
self.global_adapter = instantiate_from_config(global_control_config) if self.mode == 'uni' else None
self.clip_embeddings_dim = global_control_config.params.clip_embeddings_dim
self.color_in_dim = global_control_config.params.color_in_dim
@torch.no_grad()
def get_input(self, batch, k, bs=None, *args, **kwargs):
# latent and text
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
bs = bs or x.size(0)
shape = self.get_shape(batch, bs)
local_control = self.get_local_conditions_for_vision_encoder(batch, bs)
local_control = local_control.to(memory_format=torch.contiguous_format).float()
global_control = {}
global_conditions = batch['global_conditions'][:bs]
for key in batch['global_conditions'][0].data.keys():
global_cond = torch.stack([torch.Tensor(dc.data[key]) for dc in global_conditions])
global_cond = global_cond.to(self.device).to(memory_format=torch.contiguous_format).float()
global_control[key] = global_cond
conditions = dict(
text=[batch['txt']],
c_crossattn=[c],
local_control=[local_control],
global_control=[global_control],
)
return x, conditions
def apply_model(self, x_noisy, t, cond, local_strength=1.0, content_strength=1.0, color_strength=1.0, *args, **kwargs):
assert isinstance(cond, dict)
diffusion_model = self.model.diffusion_model
cond_txt = torch.cat(cond['c_crossattn'], 1)
text = cond['text'][0]
bs = x_noisy.shape[0]
# extract global control
if self.mode in ['uni']:
content_control, color_control = self.global_adapter(
cond['global_control'][0]['clipembedding'], cond['global_control'][0]['color'])
else:
content_control = torch.zeros(bs, self.clip_embeddings_dim).to(self.device).to(memory_format=torch.contiguous_format).float()
color_control = torch.zeros(bs, self.color_in_dim).to(self.device).to(memory_format=torch.contiguous_format).float()
# extract local control
if self.mode in ['local', 'uni']:
local_features = self.local_adapter.extract_local_features(self.q_former, text, cond['local_control'][0])
local_control = self.local_adapter(x=x_noisy, timesteps=t, context=cond_txt, local_features=local_features)
local_control = [c * scale for c, scale in zip(local_control, self.local_control_scales)]
eps = diffusion_model(
x=x_noisy, timesteps=t, context=cond_txt,
local_control=local_control, local_w=local_strength,
content_control=content_control, extra_w=content_strength,
color_control=color_control, color_w=color_strength)
return eps
@torch.no_grad()
def get_unconditional_conditioning(self, N):
return self.get_learned_conditioning([""] * N)
@torch.no_grad()
def get_unconditional_global_conditioning(self, c):
if isinstance(c, dict):
return {k:torch.zeros_like(v) for k,v in c.items()}
elif isinstance(c, list):
return [torch.zeros_like(v) for v in c]
else:
return torch.zeros_like(c)
@torch.no_grad()
def get_shape(self, batch, N):
return [dc.data[0].shape[:2] for dc in batch['local_conditions'][:N]]
@torch.no_grad()
def get_local_conditions_for_vision_encoder(self, batch, N):
# return: local_conditions, (bs, num_conds * 3, h, w)
local_conditions = []
max_len = max([len(dc.data) for dc in batch['local_conditions'][:N]])
for dc in batch['local_conditions'][:N]:
conds = torch.cat([self.qformer_vis_processor['eval'](Image.fromarray(img)).unsqueeze(0) for img in dc.data], dim=1)
local_conditions.append(conds)
local_conditions = [F.pad(cond, (0,0,0,0,0,max_len*3-cond.shape[1],0,0)) for cond in local_conditions]
local_conditions = torch.cat(local_conditions, dim=0).to(self.device)
return local_conditions
@torch.no_grad()
def get_local_conditions_for_logging(self, batch, N):
local_conditions = []
max_len = max([len(dc.data) for dc in batch['local_conditions'][:N]])
for dc in batch['local_conditions'][:N]:
conds = torch.stack([torch.Tensor(img).permute(2,0,1) for img in dc.data], dim=0) # (n, c, h, w)
conds = conds.float() / 255.
conds = conds * 2.0 - 1.0
local_conditions.append(conds)
local_conditions = [F.pad(cond, (0,0,0,0,0,0,0,max_len-cond.shape[0])) for cond in local_conditions]
local_conditions = torch.stack(local_conditions, dim=0).to(self.device) # (bs, n, c, h, w)
local_conditions = local_conditions.flatten(1,2)
return local_conditions
def clip_batch(self, batch, key, N, flag=True):
if isinstance(batch, torch.Tensor):
return batch[:N]
elif isinstance(batch, list):
return batch[:N]
batch = batch[key][0] if flag else batch[key]
if isinstance(batch, torch.Tensor):
return batch[:N]
elif isinstance(batch, list):
return batch[:N]
elif isinstance(batch, dict):
return {k:self.clip_batch(v,'',N,flag=False) for k,v in batch.items()}
else:
raise ValueError(f'Unsupported type {type(batch)}')
@torch.no_grad()
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0,
plot_denoise_rows=False, plot_diffusion_rows=False, unconditional_guidance_scale=9.0, **kwargs):
use_ddim = ddim_steps is not None
log = dict()
z, c = self.get_input(batch, self.first_stage_key, bs=N)
shape = self.get_shape(batch, N)
c_local = self.clip_batch(c, "local_control", N)
c_global = self.clip_batch(c, "global_control", N)
c_context = self.clip_batch(c, "c_crossattn", N)
c_text = self.clip_batch(batch, self.cond_stage_key, N, False)
N = min(z.shape[0], N)
n_row = min(z.shape[0], n_row)
log["reconstruction"] = self.decode_first_stage(z)
log["conditioning"] = log_txt_as_img((512, 512), c_text, size=16)
log["local_control"] = self.get_local_conditions_for_logging(batch, N)
if plot_diffusion_rows:
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row)
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
cond_dict = dict(
local_control=[c_local],
global_control=[c_global],
c_crossattn=[c_context],
text=[c_text],
shape=[shape],
)
if sample:
samples, z_denoise_row = self.sample_log(cond=cond_dict,
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
log_every_t=self.log_every_t * 0.05)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
if isinstance(z_denoise_row, dict):
for key in ['pred_x0', 'x_inter']:
z_denoise_row_key = z_denoise_row[key]
denoise_grid = self._get_denoise_row_from_list(z_denoise_row_key)
log[f"denoise_row_{key}"] = denoise_grid
else:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_context = self.get_unconditional_conditioning(N)
uc_global = self.get_unconditional_global_conditioning(c_global)
uc_local = c_local
uc_text = c_text
uncond_dict = dict(
local_control=[uc_local],
global_control=[uc_global],
c_crossattn=[uc_context],
text=[uc_text],
shape=[shape]
)
samples_cfg, _ = self.sample_log(cond=cond_dict,
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uncond_dict,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
return log
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
ddim_sampler = DDIMSampler(self)
if cond['shape'] is None:
h, w = 512, 512
else:
h, w = cond["shape"][0][0]
shape = (self.channels, h // 8, w // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
return samples, intermediates
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.q_former.parameters()) + list(self.local_adapter.parameters())
if not self.sd_locked:
params += list(self.model.diffusion_model.output_blocks.parameters())
params += list(self.model.diffusion_model.out.parameters())
opt = torch.optim.AdamW(params, lr=lr)
return opt
def low_vram_shift(self, is_diffusing):
if is_diffusing:
self.model = self.model.cuda()
self.local_adapter = self.local_adapter.cuda()
self.first_stage_model = self.first_stage_model.cpu()
self.cond_stage_model = self.cond_stage_model.cpu()
else:
self.model = self.model.cpu()
self.local_adapter = self.local_adapter.cpu()
self.first_stage_model = self.first_stage_model.cuda()
self.cond_stage_model = self.cond_stage_model.cuda()
|