import os import sys sys.path.append(os.getcwd()) sys.path.append(os.path.join(os.getcwd(), 'rayleigh')) import numpy as np from skimage.color import rgb2lab from .rayleigh import Palette from .rayleigh.util import histogram_colors_strict, smooth_histogram, color_hist_to_palette_image class CIELabDetector: MAX_DIMENSION = 240 + 1 def __init__(self, sigma=10, num_hues=11, num_light=5, num_sat=5): self.sigma = sigma self.palette = Palette(num_hues=num_hues, light_range=num_light, sat_range=num_sat) def __call__(self, img): # Handle grayscale and RGBA images. # TODO: Should be smarter here in the future, but for now simply remove # the alpha channel if present. if img.ndim == 2: img = np.tile(img[:, :, np.newaxis], (1, 1, 3)) elif img.ndim == 4: img = img[:, :, :3] img = img[:,:,:3] h, w, d = tuple(img.shape) h_stride = int(h / self.MAX_DIMENSION + 1) w_stride = int(w / self.MAX_DIMENSION + 1) img = img[::h_stride, ::w_stride, :] # Convert to L*a*b colors. h, w, d = img.shape lab_array = rgb2lab(img).reshape((h * w, d)) # compute hist hist = histogram_colors_strict(lab_array, self.palette) hist = smooth_histogram(hist, self.palette, self.sigma) return hist def hist_to_palette(self, hist): # hist to image plt = color_hist_to_palette_image(hist, self.palette) return (plt * 255).astype(np.uint8)