""" Encapsulate the list of hex colors and array of Lab values representations of a palette (codebook) of colors. Provide methods to work with color conversion and the Palette class. Provide a parametrized method to generate a palette that covers the range of colors. """ import os import numpy as np from skimage.color import hsv2rgb, rgb2lab from skimage.io import imsave from sklearn.metrics import euclidean_distances from .util import rgb2hex class Palette(object): """ Create a color palette (codebook) in the form of a 2D grid of colors, as described in the parameters list below. Further, the rightmost column has num_hues gradations from black to white. Parameters ---------- num_hues : int number of colors with full lightness and saturation, in the middle sat_range : int number of rows above middle row that show the same hues with decreasing saturation. light_range : int number of rows below middle row that show the same hues with decreasing lightness. Returns ------- palette: rayleigh.Palette """ def __init__(self, num_hues=8, sat_range=2, light_range=2): height = 1 + sat_range + (2 * light_range - 1) # generate num_hues+1 hues, but don't take the last one: # hues are on a circle, and we would be oversampling the origin hues = np.tile(np.linspace(0, 1, num_hues + 1)[:-1], (height, 1)) if num_hues == 8: hues = np.tile(np.array( [0., 0.10, 0.15, 0.28, 0.51, 0.58, 0.77, 0.85]), (height, 1)) if num_hues == 9: hues = np.tile(np.array( [0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.7, 0.87]), (height, 1)) if num_hues == 10: hues = np.tile(np.array( [0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.66, 0.76, 0.87]), (height, 1)) elif num_hues == 11: hues = np.tile(np.array( [0.0, 0.0833, 0.166, 0.25, 0.333, 0.5, 0.56333, 0.666, 0.73, 0.803, 0.916]), (height, 1)) sats = np.hstack(( np.linspace(0, 1, sat_range + 2)[1:-1], 1, [1] * (light_range), [.4] * (light_range - 1), )) lights = np.hstack(( [1] * sat_range, 1, np.linspace(1, 0.2, light_range + 2)[1:-1], np.linspace(1, 0.2, light_range + 2)[1:-2], )) sats = np.tile(np.atleast_2d(sats).T, (1, num_hues)) lights = np.tile(np.atleast_2d(lights).T, (1, num_hues)) colors = hsv2rgb(np.dstack((hues, sats, lights))) grays = np.tile( np.linspace(1, 0, height)[:, np.newaxis, np.newaxis], (1, 1, 3)) self.rgb_image = np.hstack((colors, grays)) # Make a nice histogram ordering of the hues and grays h, w, d = colors.shape color_array = colors.T.reshape((d, w * h)).T h, w, d = grays.shape gray_array = grays.T.reshape((d, w * h)).T self.rgb_array = np.vstack((color_array, gray_array)) self.lab_array = rgb2lab(self.rgb_array[None, :, :]).squeeze() self.hex_list = [rgb2hex(row) for row in self.rgb_array] #assert(np.all(self.rgb_array == self.rgb_array[None, :, :].squeeze())) self.distances = euclidean_distances(self.lab_array, squared=True) def output(self, dirname, html=False): """ Output an image of the palette, josn list of the hex colors, and an HTML color picker for it. Parameters ---------- dirname : string directory for the files to be output """ def get_palette_html(): """ Return HTML for a color picker using the given palette. """ html = """ """ for row in self.rgb_image: for rgb_color in row: s = '\n' html += s.format(rgb2hex(rgb_color)) html += "
\n" return html imsave(os.path.join(dirname, 'palette.png'), (self.rgb_image*255).astype(np.uint8)) if html: with open(os.path.join(dirname, 'palette.html'), 'w') as f: f.write(get_palette_html())