"""
Encapsulate the list of hex colors and array of Lab values representations
of a palette (codebook) of colors.
Provide methods to work with color conversion and the Palette class.
Provide a parametrized method to generate a palette that covers the range
of colors.
"""
import os
import numpy as np
from skimage.color import hsv2rgb, rgb2lab
from skimage.io import imsave
from sklearn.metrics import euclidean_distances
from .util import rgb2hex
class Palette(object):
"""
Create a color palette (codebook) in the form of a 2D grid of colors,
as described in the parameters list below.
Further, the rightmost column has num_hues gradations from black to white.
Parameters
----------
num_hues : int
number of colors with full lightness and saturation, in the middle
sat_range : int
number of rows above middle row that show
the same hues with decreasing saturation.
light_range : int
number of rows below middle row that show
the same hues with decreasing lightness.
Returns
-------
palette: rayleigh.Palette
"""
def __init__(self, num_hues=8, sat_range=2, light_range=2):
height = 1 + sat_range + (2 * light_range - 1)
# generate num_hues+1 hues, but don't take the last one:
# hues are on a circle, and we would be oversampling the origin
hues = np.tile(np.linspace(0, 1, num_hues + 1)[:-1], (height, 1))
if num_hues == 8:
hues = np.tile(np.array(
[0., 0.10, 0.15, 0.28, 0.51, 0.58, 0.77, 0.85]), (height, 1))
if num_hues == 9:
hues = np.tile(np.array(
[0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.7, 0.87]), (height, 1))
if num_hues == 10:
hues = np.tile(np.array(
[0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.66, 0.76, 0.87]), (height, 1))
elif num_hues == 11:
hues = np.tile(np.array(
[0.0, 0.0833, 0.166, 0.25,
0.333, 0.5, 0.56333,
0.666, 0.73, 0.803,
0.916]), (height, 1))
sats = np.hstack((
np.linspace(0, 1, sat_range + 2)[1:-1],
1,
[1] * (light_range),
[.4] * (light_range - 1),
))
lights = np.hstack((
[1] * sat_range,
1,
np.linspace(1, 0.2, light_range + 2)[1:-1],
np.linspace(1, 0.2, light_range + 2)[1:-2],
))
sats = np.tile(np.atleast_2d(sats).T, (1, num_hues))
lights = np.tile(np.atleast_2d(lights).T, (1, num_hues))
colors = hsv2rgb(np.dstack((hues, sats, lights)))
grays = np.tile(
np.linspace(1, 0, height)[:, np.newaxis, np.newaxis], (1, 1, 3))
self.rgb_image = np.hstack((colors, grays))
# Make a nice histogram ordering of the hues and grays
h, w, d = colors.shape
color_array = colors.T.reshape((d, w * h)).T
h, w, d = grays.shape
gray_array = grays.T.reshape((d, w * h)).T
self.rgb_array = np.vstack((color_array, gray_array))
self.lab_array = rgb2lab(self.rgb_array[None, :, :]).squeeze()
self.hex_list = [rgb2hex(row) for row in self.rgb_array]
#assert(np.all(self.rgb_array == self.rgb_array[None, :, :].squeeze()))
self.distances = euclidean_distances(self.lab_array, squared=True)
def output(self, dirname, html=False):
"""
Output an image of the palette, josn list of the hex
colors, and an HTML color picker for it.
Parameters
----------
dirname : string
directory for the files to be output
"""
def get_palette_html():
"""
Return HTML for a color picker using the given palette.
"""
html = """
"""
for row in self.rgb_image:
for rgb_color in row:
s = '\n'
html += s.format(rgb2hex(rgb_color))
html += "
\n"
return html
imsave(os.path.join(dirname, 'palette.png'), (self.rgb_image*255).astype(np.uint8))
if html:
with open(os.path.join(dirname, 'palette.html'), 'w') as f:
f.write(get_palette_html())