File size: 4,598 Bytes
107040a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# From https://github.com/carolineec/informative-drawings
# MIT License

import os
import cv2
import torch
import numpy as np

import torch.nn as nn
from einops import rearrange
from annotator.util import annotator_ckpts_path


norm_layer = nn.InstanceNorm2d


class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()

        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        model2 = []
        # Residual blocks
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out


class LineartDetector:
    def __init__(self):
        self.model = self.load_model('sk_model.pth')
        self.model_coarse = self.load_model('sk_model2.pth')

    def load_model(self, name):
        remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
        modelpath = os.path.join(annotator_ckpts_path, name)
        if not os.path.exists(modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
        model = Generator(3, 1, 3)
        model.load_state_dict(torch.load(modelpath, map_location=torch.device('cpu')))
        model.eval()
        model = model.cuda()
        return model

    def __call__(self, input_image, coarse = False):
        model = self.model_coarse if coarse else self.model
        assert input_image.ndim == 3
        image = input_image
        # images = input_images
        # results = []
        with torch.no_grad():
            image = torch.from_numpy(image).float().cuda()
            # batch_imgs = torch.stack([torch.from_numpy(image).float().cuda() / 255.0 for image in images], dim=0)
            image = image / 255.0
            image = rearrange(image, 'h w c -> 1 c h w')
            line = model(image)[0][0]

            line = line.cpu().numpy()
            line = (line * 255.0).clip(0, 255).astype(np.uint8)

            # with torch.no_grad():
            # # 将批次的图像传入模型
            #     outputs = model(batch_imgs)

            # for output in outputs:
            #     line = output[0][0].cpu().numpy()
            #     line = (line * 255.0).clip(0, 255).astype(np.uint8)
            #     results.append(line)

            # return results

            return line