Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -58,6 +58,7 @@ class CustomLLM(LLM):
|
|
58 |
llm = CustomLLM(model=model)
|
59 |
|
60 |
import gradio as gr
|
|
|
61 |
from langchain.docstore.document import Document
|
62 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
63 |
from langchain.chains.question_answering import load_qa_chain
|
@@ -66,21 +67,48 @@ from langchain.chains.question_answering import load_qa_chain
|
|
66 |
|
67 |
# embeddings = HuggingFaceEmbeddings()
|
68 |
query = "總結並以點列形式舉出重點"
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def greet(text):
|
73 |
docs = [Document(page_content=text)]
|
74 |
|
75 |
text_splitter = RecursiveCharacterTextSplitter(
|
76 |
-
chunk_size=
|
77 |
chunk_overlap=64, # 重复字数
|
78 |
length_function=len
|
79 |
)
|
80 |
texts = text_splitter.split_documents(docs)
|
81 |
# docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
|
82 |
# docs = docsearch.get_relevant_documents(query)
|
83 |
-
return chain.run(
|
|
|
84 |
|
85 |
iface = gr.Interface(fn=greet,
|
86 |
inputs=gr.Textbox(lines=20,
|
|
|
58 |
llm = CustomLLM(model=model)
|
59 |
|
60 |
import gradio as gr
|
61 |
+
from langchain.prompts import PromptTemplate
|
62 |
from langchain.docstore.document import Document
|
63 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
64 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
67 |
|
68 |
# embeddings = HuggingFaceEmbeddings()
|
69 |
query = "總結並以點列形式舉出重點"
|
70 |
+
prompt_template = """總結下文並列舉出重點:
|
71 |
+
|
72 |
+
|
73 |
+
{text}
|
74 |
+
|
75 |
+
|
76 |
+
摘要及各項重點:"""
|
77 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
|
78 |
+
# chain = load_summarize_chain(llm, chain_type="stuff", prompt=PROMPT)
|
79 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
|
80 |
+
# refine_template = (
|
81 |
+
# "你的任務是整理出一段摘要以及例舉所有重點\n"
|
82 |
+
# "我們之前已經整理出這些內容: {existing_answer}\n"
|
83 |
+
# "請再整合這些摘要並將重點整理到一個列表"
|
84 |
+
# "(如果需要) 下文這裡有更多的參考資料:\n"
|
85 |
+
# "------------\n"
|
86 |
+
# "{text}\n"
|
87 |
+
# "------------\n"
|
88 |
+
# "根據新的資料,完善原有的摘要和重點列表"
|
89 |
+
# "如果新資料對已經整理出的文字沒有補充,請重複原來的重點文字。"
|
90 |
+
# )
|
91 |
+
# refine_prompt = PromptTemplate(
|
92 |
+
# input_variables=["existing_answer", "text"],
|
93 |
+
# template=refine_template,
|
94 |
+
# )
|
95 |
+
# chain = load_summarize_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
|
96 |
+
# chain = load_qa_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
|
97 |
+
# chain = load_qa_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
|
98 |
|
99 |
def greet(text):
|
100 |
docs = [Document(page_content=text)]
|
101 |
|
102 |
text_splitter = RecursiveCharacterTextSplitter(
|
103 |
+
chunk_size=512, # 分割最大尺寸
|
104 |
chunk_overlap=64, # 重复字数
|
105 |
length_function=len
|
106 |
)
|
107 |
texts = text_splitter.split_documents(docs)
|
108 |
# docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
|
109 |
# docs = docsearch.get_relevant_documents(query)
|
110 |
+
return chain.run(texts)
|
111 |
+
# return chain.run(input_documents=texts, question=query)
|
112 |
|
113 |
iface = gr.Interface(fn=greet,
|
114 |
inputs=gr.Textbox(lines=20,
|