npc0 commited on
Commit
4d28f06
·
1 Parent(s): 9859dec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -4
app.py CHANGED
@@ -58,6 +58,7 @@ class CustomLLM(LLM):
58
  llm = CustomLLM(model=model)
59
 
60
  import gradio as gr
 
61
  from langchain.docstore.document import Document
62
  from langchain.text_splitter import RecursiveCharacterTextSplitter
63
  from langchain.chains.question_answering import load_qa_chain
@@ -66,21 +67,48 @@ from langchain.chains.question_answering import load_qa_chain
66
 
67
  # embeddings = HuggingFaceEmbeddings()
68
  query = "總結並以點列形式舉出重點"
69
- chain = load_qa_chain(llm, chain_type="map_reduce")
70
- # chain = load_qa_chain(llm, chain_type="refine")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  def greet(text):
73
  docs = [Document(page_content=text)]
74
 
75
  text_splitter = RecursiveCharacterTextSplitter(
76
- chunk_size=1024, # 分割最大尺寸
77
  chunk_overlap=64, # 重复字数
78
  length_function=len
79
  )
80
  texts = text_splitter.split_documents(docs)
81
  # docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
82
  # docs = docsearch.get_relevant_documents(query)
83
- return chain.run(input_documents=texts, question=query)
 
84
 
85
  iface = gr.Interface(fn=greet,
86
  inputs=gr.Textbox(lines=20,
 
58
  llm = CustomLLM(model=model)
59
 
60
  import gradio as gr
61
+ from langchain.prompts import PromptTemplate
62
  from langchain.docstore.document import Document
63
  from langchain.text_splitter import RecursiveCharacterTextSplitter
64
  from langchain.chains.question_answering import load_qa_chain
 
67
 
68
  # embeddings = HuggingFaceEmbeddings()
69
  query = "總結並以點列形式舉出重點"
70
+ prompt_template = """總結下文並列舉出重點:
71
+
72
+
73
+ {text}
74
+
75
+
76
+ 摘要及各項重點:"""
77
+ PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
78
+ # chain = load_summarize_chain(llm, chain_type="stuff", prompt=PROMPT)
79
+ chain = load_summarize_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
80
+ # refine_template = (
81
+ # "你的任務是整理出一段摘要以及例舉所有重點\n"
82
+ # "我們之前已經整理出這些內容: {existing_answer}\n"
83
+ # "請再整合這些摘要並將重點整理到一個列表"
84
+ # "(如果需要) 下文這裡有更多的參考資料:\n"
85
+ # "------------\n"
86
+ # "{text}\n"
87
+ # "------------\n"
88
+ # "根據新的資料,完善原有的摘要和重點列表"
89
+ # "如果新資料對已經整理出的文字沒有補充,請重複原來的重點文字。"
90
+ # )
91
+ # refine_prompt = PromptTemplate(
92
+ # input_variables=["existing_answer", "text"],
93
+ # template=refine_template,
94
+ # )
95
+ # chain = load_summarize_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
96
+ # chain = load_qa_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
97
+ # chain = load_qa_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
98
 
99
  def greet(text):
100
  docs = [Document(page_content=text)]
101
 
102
  text_splitter = RecursiveCharacterTextSplitter(
103
+ chunk_size=512, # 分割最大尺寸
104
  chunk_overlap=64, # 重复字数
105
  length_function=len
106
  )
107
  texts = text_splitter.split_documents(docs)
108
  # docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
109
  # docs = docsearch.get_relevant_documents(query)
110
+ return chain.run(texts)
111
+ # return chain.run(input_documents=texts, question=query)
112
 
113
  iface = gr.Interface(fn=greet,
114
  inputs=gr.Textbox(lines=20,