Spaces:
Sleeping
Sleeping
new prompt and without langchain
Browse files
app.py
CHANGED
@@ -20,99 +20,56 @@ max_tokens = 2048
|
|
20 |
temperature = 1.0
|
21 |
top_p = 0.7
|
22 |
top_k = 50
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
max_generated_tokens=max_tokens,
|
47 |
top_k=top_k,
|
48 |
top_p=top_p,
|
49 |
temperature=temperature):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return answer
|
54 |
-
|
55 |
-
@property
|
56 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
57 |
-
"""Get the identifying parameters."""
|
58 |
-
return {"model": "ChatGLMModel"}
|
59 |
-
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
import gradio as gr
|
64 |
-
from langchain.prompts import PromptTemplate
|
65 |
-
from langchain.docstore.document import Document
|
66 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
67 |
-
from langchain.chains.summarize import load_summarize_chain
|
68 |
-
# from langchain.chains.question_answering import load_qa_chain
|
69 |
-
# from langchain.embeddings import HuggingFaceEmbeddings
|
70 |
-
# from langchain.vectorstores import Chroma
|
71 |
-
|
72 |
-
# embeddings = HuggingFaceEmbeddings()
|
73 |
-
query = "總結並以點列形式舉出重點"
|
74 |
-
prompt_template = """總結下文並列舉出重點:
|
75 |
-
|
76 |
-
|
77 |
-
{text}
|
78 |
-
|
79 |
-
|
80 |
-
摘要及各項重點:"""
|
81 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
|
82 |
-
# chain = load_summarize_chain(llm, chain_type="stuff", prompt=PROMPT)
|
83 |
-
chain = load_summarize_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
|
84 |
-
# refine_template = (
|
85 |
-
# "你的任務是整理出一段摘要以及例舉所有重點\n"
|
86 |
-
# "我們之前已經整理出這些內容: {existing_answer}\n"
|
87 |
-
# "請再整合這些摘要並將重點整理到一個列表"
|
88 |
-
# "(如果需要) 下文這裡有更多的參考資料:\n"
|
89 |
-
# "------------\n"
|
90 |
-
# "{text}\n"
|
91 |
-
# "------------\n"
|
92 |
-
# "根據新的資料,完善原有的摘要和重點列表"
|
93 |
-
# "如果新資料對已經整理出的文字沒有補充,請重複原來的重點文字。"
|
94 |
-
# )
|
95 |
-
# refine_prompt = PromptTemplate(
|
96 |
-
# input_variables=["existing_answer", "text"],
|
97 |
-
# template=refine_template,
|
98 |
-
# )
|
99 |
-
# chain = load_summarize_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
|
100 |
-
# chain = load_qa_chain(llm, chain_type="map_reduce", map_prompt=PROMPT, combine_prompt=PROMPT)
|
101 |
-
# chain = load_qa_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=refine_prompt)
|
102 |
-
|
103 |
-
def greet(text):
|
104 |
-
docs = [Document(page_content=text)]
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
|
113 |
-
# docs = docsearch.get_relevant_documents(query)
|
114 |
-
return chain.run(texts)
|
115 |
-
# return chain.run(input_documents=texts, question=query)
|
116 |
|
117 |
iface = gr.Interface(fn=greet,
|
118 |
inputs=gr.Textbox(lines=20,
|
|
|
20 |
temperature = 1.0
|
21 |
top_p = 0.7
|
22 |
top_k = 50
|
23 |
+
prompt = """
|
24 |
+
現在有些文本,文本詳細且複雜。 它包含細節,可以縮減和綜合為關鍵要點。 你的任務是提取最重要的概念,重點關注主要思路,提供一個概述而不失去精髓。 你的總結應該:
|
25 |
+
|
26 |
+
• 簡潔但足夠充分,可以代表所有重要信息
|
27 |
+
• 使用正確的句式和連貫的流程
|
28 |
+
• 捕捉誰、什麼、何時、在哪裡、為什麼和如何
|
29 |
+
• 盡可能地保留原始風格和風格
|
30 |
+
• 你必須遵循“摘要”格式:
|
31 |
+
|
32 |
+
摘要:
|
33 |
+
用2至3個句子簡要陳述主要主題和主要發現。
|
34 |
+
|
35 |
+
主要要點:
|
36 |
+
• 要點1 - 最重要的發現或細節
|
37 |
+
• 要點2 - 第二重要的觀黵
|
38 |
+
• 要點3 - 第三個重要的信息
|
39 |
+
• 要點4(可選) - 另一個要點
|
40 |
+
• 要點5(可選) - 最後的關鍵總結要點
|
41 |
+
|
42 |
+
文本:
|
43 |
+
"""
|
44 |
+
|
45 |
+
def sum_chain_l1(text, p_bar):
|
46 |
+
docs = []
|
47 |
+
for i in p_bar(range(len(text)//2000+1)):
|
48 |
+
t = text[i*2000:i*2000+2048]
|
49 |
+
if len(t) > 0:
|
50 |
+
for answer in model.generate_iterate(prompt+t,
|
51 |
max_generated_tokens=max_tokens,
|
52 |
top_k=top_k,
|
53 |
top_p=top_p,
|
54 |
temperature=temperature):
|
55 |
+
yield answer
|
56 |
+
docs.append(answer)
|
57 |
+
return docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def sum_chain_l2_deprecated(docs):
|
60 |
+
hist = ''
|
61 |
+
for doc in tqdm(docs):
|
62 |
+
hist = model.response(prompt+"\n"+hist+"\n"+doc)
|
63 |
+
return hist
|
64 |
|
65 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def greet(x, progress=gr.Progress()):
|
68 |
+
progress(0, desc="Starting...")
|
69 |
+
docs = []
|
70 |
+
for doc in sum_chain_l1(x, progress.tqdm):
|
71 |
+
yield doc
|
72 |
+
return '===== summarized parts ====='.join(doc)
|
|
|
|
|
|
|
|
|
73 |
|
74 |
iface = gr.Interface(fn=greet,
|
75 |
inputs=gr.Textbox(lines=20,
|