Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
subprocess.run(["git", "lfs", "install"])
|
5 |
+
subprocess.run(["git", "clone", "https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8"])
|
6 |
+
os.chdir("ChatGLM-6b-onnx-u8s8")
|
7 |
+
subprocess.run(["pip", "install", "-r", "requirements.txt"])
|
8 |
+
|
9 |
+
from model import ChatGLMModel#, chat_template
|
10 |
+
|
11 |
+
model = ChatGLMModel()
|
12 |
+
# history = []
|
13 |
+
|
14 |
+
max_tokens = 512
|
15 |
+
temperature = 1.0
|
16 |
+
top_p = 0.7
|
17 |
+
top_k = 50
|
18 |
+
|
19 |
+
from typing import Any, List, Mapping, Optional
|
20 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
21 |
+
from langchain.llms.base import LLM
|
22 |
+
|
23 |
+
class CustomLLM(LLM):
|
24 |
+
model: ChatGLMModel
|
25 |
+
# history: List
|
26 |
+
|
27 |
+
@property
|
28 |
+
def _llm_type(self) -> str:
|
29 |
+
return "custom"
|
30 |
+
|
31 |
+
def _call(
|
32 |
+
self,
|
33 |
+
prompt: str,
|
34 |
+
stop: Optional[List[str]] = None,
|
35 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
36 |
+
) -> str:
|
37 |
+
if stop is not None:
|
38 |
+
raise ValueError("stop kwargs are not permitted.")
|
39 |
+
# prompt = chat_template(self.history, prompt)
|
40 |
+
for answer in self.model.generate_iterate(prompt,
|
41 |
+
max_generated_tokens=max_tokens,
|
42 |
+
top_k=top_k,
|
43 |
+
top_p=top_p,
|
44 |
+
temperature=temperature):
|
45 |
+
pass
|
46 |
+
|
47 |
+
# self.history = self.history + [(question, answer)]
|
48 |
+
return answer
|
49 |
+
|
50 |
+
@property
|
51 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
52 |
+
"""Get the identifying parameters."""
|
53 |
+
return {"model": "ChatGLMModel"}
|
54 |
+
|
55 |
+
|
56 |
+
llm = CustomLLM(model=model)
|
57 |
+
|
58 |
+
import gradio as gr
|
59 |
+
from langchain.docstore.document import Document
|
60 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
61 |
+
from langchain.chains.question_answering import load_qa_chain
|
62 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
63 |
+
# from langchain.vectorstores import Chroma
|
64 |
+
|
65 |
+
# embeddings = HuggingFaceEmbeddings()
|
66 |
+
query = "總結並以點列形式舉出重點"
|
67 |
+
chain = load_qa_chain(llm, chain_type="map_reduce")
|
68 |
+
# chain = load_qa_chain(llm, chain_type="refine")
|
69 |
+
|
70 |
+
def greet(text):
|
71 |
+
docs = [Document(page_content=text)]
|
72 |
+
|
73 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
74 |
+
chunk_size=1024, # 分割最大尺寸
|
75 |
+
chunk_overlap=64, # 重复字数
|
76 |
+
length_function=len
|
77 |
+
)
|
78 |
+
texts = text_splitter.split_documents(docs)
|
79 |
+
# docsearch = Chroma.from_texts(texts, embeddings).as_retriever()
|
80 |
+
# docs = docsearch.get_relevant_documents(query)
|
81 |
+
return chain.run(input_documents=texts, question=query)
|
82 |
+
|
83 |
+
iface = gr.Interface(fn=greet,
|
84 |
+
inputs=gr.Textbox(lines=20,
|
85 |
+
placeholder="Text Here..."),
|
86 |
+
outputs="text")
|
87 |
+
iface.launch()
|