Spaces:
Sleeping
Sleeping
Create thermal_model.py
Browse files- thermal_model.py +266 -0
thermal_model.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Thermal Cooling Performance Model for Jacket-and-Denim Ensemble
|
3 |
+
================================================================
|
4 |
+
|
5 |
+
This module implements a holistic thermal analysis model for evaluating
|
6 |
+
the passive cooling performance of a leather jacket and denim jeans combination.
|
7 |
+
Based on the IEEE paper "Thermal Overload: A Holistic Analysis of the
|
8 |
+
Jacket-and-Denim Heatsink Paradigm".
|
9 |
+
|
10 |
+
The model treats the human body as a parallel thermal network with:
|
11 |
+
- Upper body (jacket system): 3-zone parallel model
|
12 |
+
- Lower body (pants system): single-zone model
|
13 |
+
|
14 |
+
Author: Thermal Engineering Research Team
|
15 |
+
License: MIT
|
16 |
+
"""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Dict, Tuple
|
20 |
+
from dataclasses import dataclass
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class ThermalResults:
|
25 |
+
"""Data class to store thermal analysis results."""
|
26 |
+
# Upper body results
|
27 |
+
R_upper_equivalent: float
|
28 |
+
heat_dissipation_upper: float
|
29 |
+
|
30 |
+
# Lower body results
|
31 |
+
R_lower_total: float
|
32 |
+
heat_dissipation_lower: float
|
33 |
+
|
34 |
+
# Total system results
|
35 |
+
total_heat_dissipation: float
|
36 |
+
total_effective_resistance: float
|
37 |
+
thermal_efficiency: float
|
38 |
+
performance_status: str
|
39 |
+
|
40 |
+
|
41 |
+
class ThermalModel:
|
42 |
+
"""
|
43 |
+
Thermal analysis model for jacket-and-denim ensemble.
|
44 |
+
|
45 |
+
This class implements a full-body thermal resistance network model
|
46 |
+
to evaluate the passive cooling performance of the iconic outfit.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self):
|
50 |
+
"""Initialize the thermal model with default parameters."""
|
51 |
+
# Default material properties (W/m路K)
|
52 |
+
self.k_leather = 0.15
|
53 |
+
self.k_cotton = 0.05
|
54 |
+
self.k_denim = 0.06
|
55 |
+
self.k_air = 0.026
|
56 |
+
|
57 |
+
# Default material thicknesses (m)
|
58 |
+
self.d_leather = 0.0015
|
59 |
+
self.d_cotton = 0.001
|
60 |
+
self.d_denim = 0.0015
|
61 |
+
|
62 |
+
# Default convection coefficients (W/m虏路K)
|
63 |
+
self.h_open = 15.0 # Open front zone (chimney effect)
|
64 |
+
self.h_loose = 6.0 # Loose fit zone
|
65 |
+
self.h_tight = 3.5 # Tight fit zone
|
66 |
+
self.h_lower = 5.0 # Lower body average
|
67 |
+
|
68 |
+
def calculate_cooling_performance(
|
69 |
+
self,
|
70 |
+
# Environmental & physiological parameters
|
71 |
+
T_skin: float = 33.5, # Skin temperature (掳C)
|
72 |
+
T_ambient: float = 26.0, # Ambient temperature (掳C)
|
73 |
+
A_total: float = 1.8, # Total surface area (m虏)
|
74 |
+
|
75 |
+
# Body region distribution
|
76 |
+
A_frac_upper: float = 0.6, # Upper body area fraction
|
77 |
+
|
78 |
+
# Material thermal conductivities (W/m路K)
|
79 |
+
k_leather: float = None,
|
80 |
+
k_cotton: float = None,
|
81 |
+
k_denim: float = None,
|
82 |
+
k_air: float = None,
|
83 |
+
|
84 |
+
# Material thicknesses (m)
|
85 |
+
d_leather: float = None,
|
86 |
+
d_cotton: float = None,
|
87 |
+
d_denim: float = None,
|
88 |
+
d_air_gap_upper: float = 0.01, # Upper body air gap
|
89 |
+
d_air_gap_lower: float = 0.005, # Lower body air gap
|
90 |
+
|
91 |
+
# Upper body geometry & convection parameters
|
92 |
+
f_open: float = 0.35, # Open front fraction
|
93 |
+
f_loose: float = 0.50, # Loose fit fraction
|
94 |
+
h_open: float = None,
|
95 |
+
h_loose: float = None,
|
96 |
+
h_tight: float = None,
|
97 |
+
|
98 |
+
# Lower body convection parameter
|
99 |
+
h_lower: float = None
|
100 |
+
) -> ThermalResults:
|
101 |
+
"""
|
102 |
+
Calculate the passive cooling performance of the full ensemble.
|
103 |
+
|
104 |
+
The model divides the body into two parallel thermal networks:
|
105 |
+
1. Upper body (Jacket System): 3-zone parallel model
|
106 |
+
2. Lower body (Pants System): single-zone model
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
ThermalResults: Complete thermal analysis results
|
110 |
+
"""
|
111 |
+
|
112 |
+
# Use instance defaults if parameters not provided
|
113 |
+
k_leather = k_leather or self.k_leather
|
114 |
+
k_cotton = k_cotton or self.k_cotton
|
115 |
+
k_denim = k_denim or self.k_denim
|
116 |
+
k_air = k_air or self.k_air
|
117 |
+
|
118 |
+
d_leather = d_leather or self.d_leather
|
119 |
+
d_cotton = d_cotton or self.d_cotton
|
120 |
+
d_denim = d_denim or self.d_denim
|
121 |
+
|
122 |
+
h_open = h_open or self.h_open
|
123 |
+
h_loose = h_loose or self.h_loose
|
124 |
+
h_tight = h_tight or self.h_tight
|
125 |
+
h_lower = h_lower or self.h_lower
|
126 |
+
|
127 |
+
# Validate inputs
|
128 |
+
if f_open + f_loose > 1.0:
|
129 |
+
raise ValueError("Upper body area fractions (f_open + f_loose) cannot exceed 1.0")
|
130 |
+
|
131 |
+
if T_skin <= T_ambient:
|
132 |
+
raise ValueError("Skin temperature must be higher than ambient temperature")
|
133 |
+
|
134 |
+
# --- Area Distribution ---
|
135 |
+
A_upper = A_total * A_frac_upper
|
136 |
+
A_lower = A_total * (1 - A_frac_upper)
|
137 |
+
|
138 |
+
# --- Calculate Base Thermal Resistances (m虏路K/W) ---
|
139 |
+
R_cond_leather = d_leather / k_leather
|
140 |
+
R_cond_cotton = d_cotton / k_cotton
|
141 |
+
R_cond_denim = d_denim / k_denim
|
142 |
+
R_cond_air_upper = d_air_gap_upper / k_air
|
143 |
+
R_cond_air_lower = d_air_gap_lower / k_air
|
144 |
+
|
145 |
+
R_conv_open = 1 / h_open
|
146 |
+
R_conv_loose = 1 / h_loose
|
147 |
+
R_conv_tight = 1 / h_tight
|
148 |
+
R_conv_lower = 1 / h_lower
|
149 |
+
|
150 |
+
# --- Upper Body Heat Transfer Analysis ---
|
151 |
+
# Calculate series resistance for each zone
|
152 |
+
R_zone_open = R_cond_cotton + R_conv_open
|
153 |
+
R_zone_loose = R_cond_cotton + R_cond_air_upper + R_cond_leather + R_conv_loose
|
154 |
+
R_zone_tight = R_cond_cotton + R_cond_leather + R_conv_tight
|
155 |
+
|
156 |
+
# Calculate equivalent resistance for upper body parallel network
|
157 |
+
f_tight = 1 - f_open - f_loose
|
158 |
+
inv_R_upper = (f_open / R_zone_open) + (f_loose / R_zone_loose) + (f_tight / R_zone_tight)
|
159 |
+
R_upper_equiv = 1 / inv_R_upper
|
160 |
+
|
161 |
+
# Calculate upper body heat dissipation
|
162 |
+
delta_T = T_skin - T_ambient
|
163 |
+
Q_upper = (A_upper * delta_T) / R_upper_equiv
|
164 |
+
|
165 |
+
# --- Lower Body Heat Transfer Analysis ---
|
166 |
+
# Calculate series resistance for lower body
|
167 |
+
R_lower_total = R_cond_denim + R_cond_air_lower + R_conv_lower
|
168 |
+
|
169 |
+
# Calculate lower body heat dissipation
|
170 |
+
Q_lower = (A_lower * delta_T) / R_lower_total
|
171 |
+
|
172 |
+
# --- Total System Performance ---
|
173 |
+
Q_total = Q_upper + Q_lower
|
174 |
+
R_total_effective = (A_total * delta_T) / Q_total
|
175 |
+
|
176 |
+
# Calculate thermal efficiency (compared to 100W TDP)
|
177 |
+
TDP_reference = 100.0
|
178 |
+
thermal_efficiency = (Q_total / TDP_reference) * 100
|
179 |
+
|
180 |
+
# Determine performance status
|
181 |
+
if Q_total >= TDP_reference:
|
182 |
+
performance_status = "PASS - Adequate cooling performance"
|
183 |
+
elif Q_total >= 0.9 * TDP_reference:
|
184 |
+
performance_status = "MARGINAL - Near thermal limit"
|
185 |
+
else:
|
186 |
+
performance_status = f"FAIL - {TDP_reference - Q_total:.1f}W thermal deficit"
|
187 |
+
|
188 |
+
return ThermalResults(
|
189 |
+
R_upper_equivalent=R_upper_equiv,
|
190 |
+
heat_dissipation_upper=Q_upper,
|
191 |
+
R_lower_total=R_lower_total,
|
192 |
+
heat_dissipation_lower=Q_lower,
|
193 |
+
total_heat_dissipation=Q_total,
|
194 |
+
total_effective_resistance=R_total_effective,
|
195 |
+
thermal_efficiency=thermal_efficiency,
|
196 |
+
performance_status=performance_status
|
197 |
+
)
|
198 |
+
|
199 |
+
def get_performance_summary(self, results: ThermalResults, TDP: float = 100.0) -> Dict[str, str]:
|
200 |
+
"""
|
201 |
+
Generate a human-readable performance summary.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
results: ThermalResults object from calculate_cooling_performance
|
205 |
+
TDP: Target thermal design power in watts
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
Dictionary containing formatted summary strings
|
209 |
+
"""
|
210 |
+
summary = {
|
211 |
+
"Upper Body Performance": f"{results.heat_dissipation_upper:.1f}W "
|
212 |
+
f"(R_eq = {results.R_upper_equivalent:.3f} m虏路K/W)",
|
213 |
+
|
214 |
+
"Lower Body Performance": f"{results.heat_dissipation_lower:.1f}W "
|
215 |
+
f"(R_total = {results.R_lower_total:.3f} m虏路K/W)",
|
216 |
+
|
217 |
+
"Total Heat Dissipation": f"{results.total_heat_dissipation:.1f}W",
|
218 |
+
|
219 |
+
"Thermal Efficiency": f"{results.thermal_efficiency:.1f}% of {TDP}W target",
|
220 |
+
|
221 |
+
"Performance Status": results.performance_status,
|
222 |
+
|
223 |
+
"Engineering Assessment": self._get_engineering_assessment(results, TDP)
|
224 |
+
}
|
225 |
+
|
226 |
+
return summary
|
227 |
+
|
228 |
+
def _get_engineering_assessment(self, results: ThermalResults, TDP: float) -> str:
|
229 |
+
"""Generate engineering assessment based on results."""
|
230 |
+
Q_total = results.total_heat_dissipation
|
231 |
+
|
232 |
+
if Q_total >= TDP:
|
233 |
+
return ("System operates within thermal limits. "
|
234 |
+
"Passive cooling is sufficient for sustained operation.")
|
235 |
+
elif Q_total >= 0.95 * TDP:
|
236 |
+
return ("System operates at thermal edge. "
|
237 |
+
"Consider environmental optimization or brief duty cycles.")
|
238 |
+
elif Q_total >= 0.85 * TDP:
|
239 |
+
return ("Thermal deficit detected. "
|
240 |
+
"Active cooling or garment optimization recommended.")
|
241 |
+
else:
|
242 |
+
return ("Significant thermal bottleneck. "
|
243 |
+
"Major design modifications required for target TDP.")
|
244 |
+
|
245 |
+
|
246 |
+
def demo_calculation():
|
247 |
+
"""Demonstration of the thermal model with default parameters."""
|
248 |
+
model = ThermalModel()
|
249 |
+
results = model.calculate_cooling_performance()
|
250 |
+
summary = model.get_performance_summary(results)
|
251 |
+
|
252 |
+
print("=" * 60)
|
253 |
+
print("THERMAL ANALYSIS: Jacket-and-Denim Heatsink Performance")
|
254 |
+
print("=" * 60)
|
255 |
+
|
256 |
+
for key, value in summary.items():
|
257 |
+
print(f"{key:.<25}: {value}")
|
258 |
+
|
259 |
+
print("\n" + "=" * 60)
|
260 |
+
print("Analysis complete. See full results above.")
|
261 |
+
|
262 |
+
return results, summary
|
263 |
+
|
264 |
+
|
265 |
+
if __name__ == "__main__":
|
266 |
+
demo_calculation()
|