File size: 1,149 Bytes
2069ee0 b83f839 2069ee0 b83f839 2069ee0 b83f839 2069ee0 b83f839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import duckdb
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import DuckDB
conn = duckdb.connect('your_database.duckdb')
embedding_function = HuggingFaceEmbeddings()
vector_store = DuckDB(conn, embedding_function)
# Define a data structure for user data
class User:
def __init__(self, phone: str, features: str):
self.phone = phone
self.features = features
def create(self):
vector_store.add_texts([f'#features\n{self.features}\n\n#phone\n{self.phone}'])
def search(self):
return vector_store.similarity_search(self.features, k=1)
def greet(a, b, c):
u = User(a, b)
if c:
return u.search()
u.create()
return 1
demo = gr.Interface(fn=greet, inputs=["textbox", "button"], outputs="text")
with gr.Blocks():
p = gr.Textbox()
f = gr.Textbox()
n = gr.Textbox()
btn = gr.Button(value="insert")
btn.click(greet, inputs=[p, f, 0], outputs=[n])
btn = gr.Button(value="query")
btn.click(greet, inputs=[p, f, 1], outputs=[n])
# demo.launch()
demo.launch(auth=("username", "password")) |