Spaces:
Runtime error
Runtime error
Matt C
commited on
Commit
•
33ec467
1
Parent(s):
79c7e0d
tweak
Browse files
app.py
CHANGED
@@ -5,31 +5,28 @@ import torch
|
|
5 |
from torch import nn
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
|
8 |
-
|
9 |
-
txt = st.text_area('Text to analyze',
|
10 |
|
11 |
# load tokenizer and model weights
|
12 |
tokenizer = AutoTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier")
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("s-nlp/roberta_toxicity_classifier")
|
14 |
batch = tokenizer.encode(txt, return_tensors='pt')
|
15 |
|
16 |
-
# run
|
|
|
17 |
result = model(batch)
|
18 |
|
19 |
-
#
|
|
|
20 |
# first indice is neutral, second is toxic
|
21 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
22 |
-
|
23 |
neutralProb = prediction.data[0][0]
|
24 |
toxicProb = prediction.data[0][1]
|
25 |
|
26 |
-
neutralProb = torch.round(neutralProb, decimals=4)
|
27 |
-
toxicProb = torch.round(toxicProb, decimals=4)
|
28 |
-
|
29 |
# default text input ought to return:
|
30 |
# Neutral: 0.0052
|
31 |
# Toxic: 0.9948
|
32 |
-
|
33 |
st.write("Classification Probabilities")
|
34 |
-
st.write(f"{neutralProb:.4}
|
35 |
-
st.write(f"{toxicProb:.4}
|
|
|
5 |
from torch import nn
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
|
8 |
+
defaultTxt = "I hate you cancerous insects so much"
|
9 |
+
txt = st.text_area('Text to analyze', defaultTxt)
|
10 |
|
11 |
# load tokenizer and model weights
|
12 |
tokenizer = AutoTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier")
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("s-nlp/roberta_toxicity_classifier")
|
14 |
batch = tokenizer.encode(txt, return_tensors='pt')
|
15 |
|
16 |
+
# run encoding through model to get classification output
|
17 |
+
# e.g. "logits": tensor([[ 4.8982, -5.1952]], grad_fn=<AddmmBackward0>)
|
18 |
result = model(batch)
|
19 |
|
20 |
+
# transform logit to get probabilities
|
21 |
+
# e.g. tensor([[9.9996e-01, 4.2627e-05]], grad_fn=<SoftmaxBackward0>)
|
22 |
# first indice is neutral, second is toxic
|
23 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
|
|
24 |
neutralProb = prediction.data[0][0]
|
25 |
toxicProb = prediction.data[0][1]
|
26 |
|
|
|
|
|
|
|
27 |
# default text input ought to return:
|
28 |
# Neutral: 0.0052
|
29 |
# Toxic: 0.9948
|
|
|
30 |
st.write("Classification Probabilities")
|
31 |
+
st.write(f"{neutralProb:.4} - NEUTRAL")
|
32 |
+
st.write(f"{toxicProb:.4} - TOXIC")
|