import streamlit as st import plotly.express as px import torch from torch import nn from transformers import AutoTokenizer, AutoModelForSequenceClassification option = st.selectbox("Select a toxicity analysis model:", ("RoBERTa", "DistilBERT", "XLM-RoBERTa")) defaultTxt = "I hate you cancerous insects so much" txt = st.text_area("Text to analyze", defaultTxt) # Load tokenizer and model weights, try to default to RoBERTa. match option: case "RoBERTa": tokenizerPath = "s-nlp/roberta_toxicity_classifier" modelPath = "s-nlp/roberta_toxicity_classifier" case "DistilBERT": tokenizerPath = "citizenlab/distilbert-base-multilingual-cased-toxicity" modelPath = "citizenlab/distilbert-base-multilingual-cased-toxicity" case "XLM-RoBERTa": tokenizerPath = "unitary/multilingual-toxic-xlm-roberta" modelPath = "unitary/multilingual-toxic-xlm-roberta" case _: tokenizerPath = "s-nlp/roberta_toxicity_classifier" modelPath = "s-nlp/roberta_toxicity_classifier" tokenizer = AutoTokenizer.from_pretrained(tokenizerPath) model = AutoModelForSequenceClassification.from_pretrained(modelPath) # run encoding through model to get classification output # RoBERTA: [0]: neutral, [1]: toxic encoding = tokenizer.encode(txt, return_tensors='pt') result = model(encoding) # transform logit to get probabilities prediction = nn.functional.softmax(result.logits, dim=-1) neutralProb = prediction.data[0][0] toxicProb = prediction.data[0][1] # Expected returns from RoBERTa on default text: # Neutral: 0.0052 # Toxic: 0.9948 st.write("Classification Probabilities") st.write(f"{neutralProb:4.4} - NEUTRAL") st.write(f"{toxicProb:4.4} - TOXIC")